Movatterモバイル変換


[0]ホーム

URL:


bpgmm: Bayesian Model Selection Approach for Parsimonious GaussianMixture Models

Model-based clustering using Bayesian parsimonious Gaussian mixture models. MCMC (Markov chain Monte Carlo) are used for parameter estimation. The RJMCMC (Reversible-jump Markov chain Monte Carlo) is used for model selection. GREEN et al. (1995) <doi:10.1093/biomet/82.4.711>.

Version:1.1.1
Depends:R (≥ 3.1.0)
Imports:methods (≥ 3.5.1),mcmcse (≥ 1.3-2),pgmm (≥ 1.2.3),mvtnorm (≥ 1.0-10),MASS (≥ 7.3-51.1),Rcpp (≥ 1.0.1),gtools (≥ 3.8.1),label.switching (≥ 1.8),fabMix (≥ 5.0),mclust (≥ 5.4.3)
LinkingTo:Rcpp,RcppArmadillo
Suggests:testthat
Published:2025-10-30
DOI:10.32614/CRAN.package.bpgmm
Author:Yaoxiang Li [aut, cre], Xiang Lu [aut], Tanzy Love [aut]
Maintainer:Yaoxiang Li <yl814 at georgetown.edu>
License:GPL-3
NeedsCompilation:yes
CRAN checks:bpgmm results

Documentation:

Reference manual:bpgmm.html ,bpgmm.pdf

Downloads:

Package source: bpgmm_1.1.1.tar.gz
Windows binaries: r-devel:bpgmm_1.1.1.zip, r-release:bpgmm_1.1.1.zip, r-oldrel:bpgmm_1.1.1.zip
macOS binaries: r-release (arm64):bpgmm_1.1.1.tgz, r-oldrel (arm64):bpgmm_1.1.1.tgz, r-release (x86_64):bpgmm_1.1.1.tgz, r-oldrel (x86_64):bpgmm_1.1.1.tgz
Old sources: bpgmm archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=bpgmmto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp