Movatterモバイル変換


[0]ホーム

URL:


gbts: Hyperparameter Search for Gradient Boosted Trees

An implementation of hyperparameter optimization for Gradient Boosted Trees on binary classification and regression problems. The current version provides two optimization methods: Bayesian optimization and random search. Instead of giving the single best model, the final output is an ensemble of Gradient Boosted Trees constructed via the method of ensemble selection.

Version:1.2.0
Depends:R (≥ 3.3.0)
Imports:doParallel,doRNG,foreach,gbm,earth
Suggests:testthat
Published:2017-02-27
DOI:10.32614/CRAN.package.gbts
Author:Waley W. J. Liang
Maintainer:Waley W. J. Liang <wliang10 at gmail.com>
License:GPL-2 |GPL-3 | fileLICENSE [expanded from: GPL (≥ 2) | file LICENSE]
NeedsCompilation:no
Materials:README,NEWS
CRAN checks:gbts results

Documentation:

Reference manual:gbts.html ,gbts.pdf

Downloads:

Package source: gbts_1.2.0.tar.gz
Windows binaries: r-devel:gbts_1.2.0.zip, r-release:gbts_1.2.0.zip, r-oldrel:gbts_1.2.0.zip
macOS binaries: r-release (arm64):gbts_1.2.0.tgz, r-oldrel (arm64):gbts_1.2.0.tgz, r-release (x86_64):gbts_1.2.0.tgz, r-oldrel (x86_64):gbts_1.2.0.tgz
Old sources: gbts archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=gbtsto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp