Movatterモバイル変換


[0]ホーム

URL:


lincom: Linear Biomarker Combination: Empirical Performance Optimization

Perform two linear combination methods for biomarkers: (1) Empirical performance optimization for specificity (or sensitivity) at a controlled sensitivity (or specificity) level of Huang and Sanda (2022) <doi:10.1214/22-aos2210>, and (2) weighted maximum score estimator with empirical minimization of averaged false positive rate and false negative rate. Both adopt the algorithms of Huang and Sanda (2022) <doi:10.1214/22-aos2210>. 'MOSEK' solver is used and needs to be installed; an academic license for 'MOSEK' is free.

Version:1.2
Depends:R (≥ 3.6.0)
Imports:SparseM,Rmosek, methods, stats
Suggests:knitr,rmarkdown
Published:2024-06-30
DOI:10.32614/CRAN.package.lincom
Author:Yijian Huang
Maintainer:Yijian Huang <yhuang5 at emory.edu>
License:GPL-2 |GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation:yes
SystemRequirements:MOSEK (>= 6), MOSEK License (>= 6)
CRAN checks:lincom results

Documentation:

Reference manual:lincom.html ,lincom.pdf
Vignettes:Linear Biomarker Combination: Empirical Performance Optimization (source,R code)

Downloads:

Package source: lincom_1.2.tar.gz
Windows binaries: r-devel:lincom_1.2.zip, r-release:lincom_1.2.zip, r-oldrel:lincom_1.2.zip
macOS binaries: r-release (arm64):lincom_1.2.tgz, r-oldrel (arm64):lincom_1.2.tgz, r-release (x86_64):lincom_1.2.tgz, r-oldrel (x86_64):lincom_1.2.tgz
Old sources: lincom archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=lincomto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp