library(crmPack)data<-DataDA(x =c(0.1,0.5,1.5,3,6,10,10,10),y =c(0,0,1,1,0,0,1,0),ID =as.integer(1:8),cohort =as.integer(c(1,2,3,4,5,6,6,6)),doseGrid =c(0.1,0.5,1.5,3,6,seq(from =10,to =80,by =2) ),u =c(42,30,15,5,20,25,30,60),t0 =rep(0,8),Tmax =60)emptydata<-DataDA(doseGrid =c(0.1,0.5,1,1.5,3,6,seq(from =10,to =80,by =2) ),Tmax =60)plot of chunk Diagnose-1
plot of chunk Diagnose-2
plot of chunk Fit-1
plot of chunk Fit-2
emptydata<-DataDA(doseGrid =c(0.1,0.5,1.5,3,6,seq(from =10,to =80,by =2)),Tmax =60)Priorsamples<-mcmc(emptydata, model, options)plot(Priorsamples, model, emptydata,hazard =FALSE)plot of chunk Prior
Need to fill in (use the same rule in the section 8 of “using thepackage crmPack: introductory examples”)
myIncrements<-IncrementsRelative(intervals =c(0,20),increments =c(1,0.33))nextMaxDose<-maxDose(myIncrements,data = data)myNextBest<-NextBestNCRM(target =c(0.2,0.35),overdose =c(0.35,1),max_overdose_prob =0.25)mySize1<-CohortSizeRange(intervals =c(0,30),cohort_size =c(1,3))mySize2<-CohortSizeDLT(intervals =c(0,1),cohort_size =c(1,3))mySize<-maxSize(mySize1, mySize2)myStopping1<-StoppingTargetProb(target =c(0.2,0.35),prob =0.5)myStopping2<-StoppingMinPatients(nPatients =50)myStopping<- (myStopping1| myStopping2)DADesign to be completedplot of chunk Truth
Use a similar way as section 9.2 in the “using the package crmPack:introductory examples” document
plot of chunk Interpret