Movatterモバイル変換


[0]ホーム

URL:


l0ara: Sparse Generalized Linear Model with L0 Approximation forFeature Selection

An efficient procedure for feature selection for generalized linear models with L0 penalty, including linear, logistic, Poisson, gamma, inverse Gaussian regression. Adaptive ridge algorithms are used to fit the models.

Version:0.1.6
Imports:Rcpp (≥ 0.12.6)
LinkingTo:Rcpp,RcppArmadillo
Published:2020-02-06
DOI:10.32614/CRAN.package.l0ara
Author:Wenchuan Guo, Shujie Ma, Zhenqiu Liu
Maintainer:Wenchuan Guo <wguo007 at ucr.edu>
License:GPL-2
NeedsCompilation:yes
Materials:README,NEWS
CRAN checks:l0ara results

Documentation:

Reference manual:l0ara.html ,l0ara.pdf

Downloads:

Package source: l0ara_0.1.6.tar.gz
Windows binaries: r-devel:l0ara_0.1.6.zip, r-release:l0ara_0.1.6.zip, r-oldrel:l0ara_0.1.6.zip
macOS binaries: r-release (arm64):l0ara_0.1.6.tgz, r-oldrel (arm64):l0ara_0.1.6.tgz, r-release (x86_64):l0ara_0.1.6.tgz, r-oldrel (x86_64):l0ara_0.1.6.tgz
Old sources: l0ara archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=l0arato link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp