Movatterモバイル変換


[0]ホーム

URL:


singleCellHaystack: A Universal Differential Expression Prediction Tool forSingle-Cell and Spatial Genomics Data

One key exploratory analysis step in single-cell genomics data analysis is the prediction of features with different activity levels. For example, we want to predict differentially expressed genes (DEGs) in single-cell RNA-seq data, spatial DEGs in spatial transcriptomics data, or differentially accessible regions (DARs) in single-cell ATAC-seq data. 'singleCellHaystack' predicts differentially active features in single cell omics datasets without relying on the clustering of cells into arbitrary clusters. 'singleCellHaystack' uses Kullback-Leibler divergence to find features (e.g., genes, genomic regions, etc) that are active in subsets of cells that are non-randomly positioned inside an input space (such as 1D trajectories, 2D tissue sections, multi-dimensional embeddings, etc). For the theoretical background of 'singleCellHaystack' we refer to our original paper Vandenbon and Diez (Nature Communications, 2020) <doi:10.1038/s41467-020-17900-3> and our update Vandenbon and Diez (Scientific Reports, 2023) <doi:10.1038/s41598-023-38965-2>.

Version:1.0.3
Imports:methods,Matrix, splines,ggplot2,reshape2
Suggests:knitr,rmarkdown,testthat,SummarizedExperiment,SingleCellExperiment,SeuratObject,cowplot,wrswoR,sparseMatrixStats,ComplexHeatmap,patchwork
Published:2025-12-04
DOI:10.32614/CRAN.package.singleCellHaystack
Author:Alexis VandenbonORCID iD [aut, cre], Diego DiezORCID iD [aut]
Maintainer:Alexis Vandenbon <alexis.vandenbon at gmail.com>
BugReports:https://github.com/alexisvdb/singleCellHaystack/issues
License:MIT + fileLICENSE
URL:https://alexisvdb.github.io/singleCellHaystack/,https://github.com/alexisvdb/singleCellHaystack
NeedsCompilation:no
Citation:singleCellHaystack citation info
Materials:NEWS
In views:Omics
CRAN checks:singleCellHaystack results

Documentation:

Reference manual:singleCellHaystack.html ,singleCellHaystack.pdf
Vignettes:Application on toy example (source,R code)

Downloads:

Package source: singleCellHaystack_1.0.3.tar.gz
Windows binaries: r-devel:singleCellHaystack_1.0.3.zip, r-release:singleCellHaystack_1.0.3.zip, r-oldrel:singleCellHaystack_1.0.3.zip
macOS binaries: r-release (arm64):singleCellHaystack_1.0.3.tgz, r-oldrel (arm64):singleCellHaystack_1.0.3.tgz, r-release (x86_64):singleCellHaystack_1.0.3.tgz, r-oldrel (x86_64):singleCellHaystack_1.0.3.tgz
Old sources: singleCellHaystack archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=singleCellHaystackto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp