The purpose ofpkgdiff is to identify changesbetween package versions, with the aim of assessing package stability.Here is a list of the major functions inpkgdiff, and ashort explanation of each:
pkg_info(): Displays general information about apackage, including the description, maintainer, and number of downloadsin the last month.pkg_versions(): Returns a data frame of all versions ofa package.pkg_diff(): Compares two versions of a package, andshows which functions and parameters have been added or removed.pkg_stability(): Looks at the history of a package,identifies breaking changes, and assesses the package forstability.pkg_summary(): Creates an HTML summary of informationabout a package, and sends it to the RStudio viewer.pkg_repo(): Generates a table of the packages in arepository and their versions.repo_breakages(): Looks at a package repository andtries to identify which packages will break when upgraded.repo_stability(): Looks at a package repository andcalculates a stability score for each package.Below is a further elaboration and demo for each of the abovefunctions.
The first thing you may want to do when exploring a package is to getsome general information about it. General information about a packagecan be achieved using thepkg_info() function. All you needto pass is the package name. The function will then return basicinformation such as the maintainer, description, and imported packages.Here is a simple demonstration:
# Examine tidymodels packagepkg_info("tidymodels")# # A package info object: tidymodels package# - Version: v1.2.0# - Release Date: 2024-03-25# - Title: Easily Install and Load the 'Tidymodels' Packages# - Maintainer: Max Kuhn <max@posit.co># - License: MIT + file LICENSE# - Description: The tidy modeling "verse" is a collection of packages for# modeling and statistical analysis that share the underlying design# philosophy, grammar, and data structures of the tidyverse.# - Depends: R (>= 3.6)# - Imports: broom (>= 1.0.5), cli (>= 3.6.2), conflicted (>= 1.2.0),# dials (>= 1.2.1), dplyr (>= 1.1.4), ggplot2 (>= 3.5.0), hardhat (>= 1.3.1),# infer (>= 1.0.6), modeldata (>= 1.3.0), parsnip (>= 1.2.1), purrr (>= 1.0.2),# recipes (>= 1.0.10), rlang (>= 1.1.3), rsample (>= 1.2.1), rstudioapi (>= 0.16.0),# tibble (>= 3.2.1), tidyr (>= 1.3.1), tune (>= 1.2.0), workflows (>= 1.1.4),# workflowsets (>= 1.1.0), yardstick (>= 1.3.1)# - Suggests: covr, glue, knitr, rmarkdown, testthat (>= 3.0.0), xml2# - Repository: CRAN# - Cached: TRUE# - Functions: 9The return value of this function is actually an object that can bemanipulated programmatically. Here we will extract some of the datavalues from this object:
# Capture package info objectres<-pkg_info("tidymodels")# View versionres$Version# [1] "1.3.0"# View titleres$Title# [1] "Easily Install and Load the 'Tidymodels' Packages"# View release dateres$ReleaseDate# [1] "2025-02-21"Note that, by default, the version of the package returned is theversion of the package located on the current machine, in the currentversion of the R repository. If the package is not installed in thecurrent R repository, the function will return the latest version onCRAN.
Also note that the object provides a complete list of all functionsexported by the package. The function list can be accessedprogrammatically, and also viewed using theverboseparameter of theprint() function:
# Get package infores<-pkg_info("tidymodels")# View functionsprint(res,verbose =TRUE)# # A package info object: tidymodels package# - Version: v1.3.0# - Release Date: 2025-02-21# - Title: Easily Install and Load the 'Tidymodels' Packages# - Maintainer: Max Kuhn <max@posit.co># - License: MIT + file LICENSE# - Description: The tidy modeling "verse" is a collection of packages for# modeling and statistical analysis that share the underlying design# philosophy, grammar, and data structures of the tidyverse.# - Depends: R (>= 3.6)# - Imports: broom (>= 1.0.7), cli (>= 3.6.4), conflicted (>= 1.2.0),# dials (>= 1.4.0), dplyr (>= 1.1.4), ggplot2 (>= 3.5.1), hardhat (>= 1.4.1),# infer (>= 1.0.7), modeldata (>= 1.4.0), parsnip (>= 1.3.0), purrr (>= 1.0.4),# recipes (>= 1.1.1), rlang (>= 1.1.5), rsample (>= 1.2.1), rstudioapi (>= 0.17.1),# tibble (>= 3.2.1), tidyr (>= 1.3.1), tune (>= 1.3.0), workflows (>= 1.2.0),# workflowsets (>= 1.1.0), yardstick (>= 1.3.2)# - Suggests: covr, glue, knitr, rmarkdown, testthat (>= 3.0.0), xml2# - Downloads/Month: 31789# - Repository: CRAN# - Cached: TRUE# - Functions:# - pkg_deps(): x, recursive# - print.tidymodels_conflicts(): x, ..., startup# - tag_attach(): tag# - tag_show()# - tag_update(): tag# - tidymodels_conflicts()# - tidymodels_packages(): include_self# - tidymodels_prefer(): quiet# - tidymodels_update(): pkg, recursive, ...Besides general information about a package, you may also view the“stability” of a package. Thepkg_stability() functionlooks at the entire history of the package, and attempts to assess itsoverall stability in terms of breaking changes. Here, a “breakingchange” means either a removed function or removed function parameter.Thepkg_stability() function is very useful when you arewriting production code, and want to select the most stable packagespossible. The results of this function can help you make thatdetermination:
# View package stabilitypkg_stability("tidymodels")# # A stability score: tidymodels package# - Age: 6.58 years# - Score: 100.0# - Assessment: Perfect# - Version Range: 0.0.1/1.3.0# - Release Range: 2018-07-27/2025-02-21# - Release Count: 14# - Breaking Releases: 0# - Data:# Package Version FileName Release Size AF AP RF RP BC TF# 1 tidymodels 1.3.0 tidymodels_1.3.0.tar.gz 2025-02-21 46.4K 0 0 0 0 0 9# 2 tidymodels 1.2.0 tidymodels_1.2.0.tar.gz 2024-03-25 49.6K 0 0 0 0 0 9# 3 tidymodels 1.1.1 tidymodels_1.1.1.tar.gz 2023-08-24 50K 0 0 0 0 0 9# 4 tidymodels 1.1.0 tidymodels_1.1.0.tar.gz 2023-05-01 49K 0 0 0 0 0 9# 5 tidymodels 1.0.0 tidymodels_1.0.0.tar.gz 2022-07-13 75K 0 0 0 0 0 9# 6 tidymodels 0.2.0 tidymodels_0.2.0.tar.gz 2022-03-19 75K 0 0 0 0 0 9# 7 tidymodels 0.1.4 tidymodels_0.1.4.tar.gz 2021-10-01 17K 0 0 0 0 0 9# 8 tidymodels 0.1.3 tidymodels_0.1.3.tar.gz 2021-04-19 15K 1 0 0 0 0 9# 9 tidymodels 0.1.2 tidymodels_0.1.2.tar.gz 2020-11-22 26K 0 0 0 0 0 8# 10 tidymodels 0.1.1 tidymodels_0.1.1.tar.gz 2020-07-14 25K 0 0 0 0 0 8# 11 tidymodels 0.1.0 tidymodels_0.1.0.tar.gz 2020-02-16 57K 0 0 0 0 0 8# 12 tidymodels 0.0.3 tidymodels_0.0.3.tar.gz 2019-10-05 19K 0 0 0 0 0 8# 13 tidymodels 0.0.2 tidymodels_0.0.2.tar.gz 2018-11-27 18K 0 0 0 0 0 8# 14 tidymodels 0.0.1 tidymodels_0.0.1.tar.gz 2018-07-27 18K 8 8 0 0 0 8The stability score is calculated generally as the percentage ofnon-breaking releases. Breaking releases are also weighted to reducetheir impact over time. The above score of 100 fortidymodels means that the package has never had abreaking change. It is therefore given a stability assessment of“Perfect”.
Now let’s look at a package with some breaking changes:
# View package stabilitypkg_stability("dbplyr")# # A stability score: dbplyr package# - Age: 7.67 years# - Score: 73.7# - Assessment: Unstable# - Version Range: 1.0.0/2.5.0# - Release Range: 2017-06-09/2024-03-19# - Release Count: 23# - Breaking Releases: 10# - Data:# Package Version FileName Release Size AF AP RF RP BC TF# 1 dbplyr 2.5.0 dbplyr_2.5.0.tar.gz 2024-03-19 752.6K 32 6 12 0 1 611# 2 dbplyr 2.4.0 dbplyr_2.4.0.tar.gz 2023-10-26 743K 74 80 45 33 1 591# 3 dbplyr 2.3.4 dbplyr_2.3.4.tar.gz 2023-09-27 706K 0 0 0 0 0 562# 4 dbplyr 2.3.3 dbplyr_2.3.3.tar.gz 2023-07-07 706K 0 0 0 0 0 562# 5 dbplyr 2.3.2 dbplyr_2.3.2.tar.gz 2023-03-21 707K 0 1 0 1 1 562# 6 dbplyr 2.3.1 dbplyr_2.3.1.tar.gz 2023-02-24 707K 5 6 1 0 1 562# 7 dbplyr 2.3.0 dbplyr_2.3.0.tar.gz 2023-01-16 688K 33 16 5 1 1 558# 8 dbplyr 2.2.1 dbplyr_2.2.1.tar.gz 2022-06-27 655K 4 0 0 0 0 530# 9 dbplyr 2.2.0 dbplyr_2.2.0.tar.gz 2022-06-05 655K 136 47 53 1 1 526# 10 dbplyr 2.1.1 dbplyr_2.1.1.tar.gz 2021-04-06 568K 5 0 0 0 0 443# 11 dbplyr 2.1.0 dbplyr_2.1.0.tar.gz 2021-02-03 566K 15 2 0 0 0 438# 12 dbplyr 2.0.0 dbplyr_2.0.0.tar.gz 2020-11-03 522K 139 33 94 11 1 423# 13 dbplyr 1.4.4 dbplyr_1.4.4.tar.gz 2020-05-27 417K 5 0 0 0 0 378# 14 dbplyr 1.4.3 dbplyr_1.4.3.tar.gz 2020-04-19 413K 9 3 2 2 1 373# 15 dbplyr 1.4.2 dbplyr_1.4.2.tar.gz 2019-06-17 296K 1 0 0 0 0 366# 16 dbplyr 1.4.1 dbplyr_1.4.1.tar.gz 2019-06-06 296K 1 0 0 0 0 365# 17 dbplyr 1.4.0 dbplyr_1.4.0.tar.gz 2019-04-24 295K 24 30 17 13 1 364# 18 dbplyr 1.3.0 dbplyr_1.3.0.tar.gz 2019-01-09 263K 2 0 0 0 0 357# 19 dbplyr 1.2.2 dbplyr_1.2.2.tar.gz 2018-07-25 258K 0 0 0 0 0 355# 20 dbplyr 1.2.1 dbplyr_1.2.1.tar.gz 2018-02-19 257K 0 0 0 0 0 355# 21 dbplyr 1.2.0 dbplyr_1.2.0.tar.gz 2018-01-03 257K 43 6 2 2 1 355# 22 dbplyr 1.1.0 dbplyr_1.1.0.tar.gz 2017-06-27 241K 23 2 0 0 0 314# 23 dbplyr 1.0.0 dbplyr_1.0.0.tar.gz 2017-06-09 235K 291 291 0 0 0 291As seen above, thedbplyr package has had a lot ofbreaking changes. Which releases had breaking changes are shown in the“BC” column of the data grid. The “AF” and “AP” columns stand for “AddedFunctions” and “Added Parameters”, while “RF” and “RP” mean “RemovedFunctions” and “Removed Parameters”. “TF” is the total number ofexported functions in that version of the package.
Since this package has issued breaking changes in 10 out of 23releases, it gets a stability score of 73.7, and an assessment of“Unstable”. A stability assessment of “Unstable” does not necessarilymean you should not use the package. Whether or not you use the packagedepends on your situation, and the amount of risk you can tolerate.
The information from the above functions can also be combined into anice report usingpkg_summary().pkg_summary()pulls key data frompkg_info() andpkg_stability() and generates an HTML page, which it thensends to the RStudio viewer.
For example, you can run a package summary report for thedplyr package like this:
The following will then appear in the RStudio viewer:
The chart shows the number of breaking changes per release. As youcan see, thedplyr package had a large number ofbreaking changes between version “0.8.5” and version “1.0.0”, but hasbeen relatively stable since then.
The Package Summary Report provides an easy way to get an overview ofa package. For additional information, see thepkg_summary() documentation.
If you find a package with breaking changes, you would then want toknow what those breaking changes are. The breaking changes betweenpackage versions can be discovered with thepkg_diff()function. This function accepts a package name, and the two versions ofthe package you wish to compare.
Looking at our stability data above, let’s examine the breakingchanges between versions “2.4.0” and “2.5.0” ofdbplyr:
# Compare package versionspkg_diff("dbplyr","2.4.0","2.5.0")# # A difference object: dbplyr package# - Comparing: v2.4.0/v2.5.0# - Breaking Changes: TRUE# - Added Functions:# - [.dbplyr_table_path()# - [[.dbplyr_table_path()# - as_table_path()# - c.dbplyr_table_path()# - check_table_path()# - complete.tbl_lazy()# - db_explain.Oracle()# - db_explain.OraConnection()# - db_sql_render.Microsoft SQL Server()# - escape.dbplyr_table_path()# - escape.default()# - expand.tbl_lazy()# - fill.tbl_lazy()# - group_by_drop_default.tbl_lazy()# - intersect.tbl_lazy()# - is_table_path()# - pivot_longer.tbl_lazy()# - pivot_wider.tbl_lazy()# - print.dbplyr_table_path()# - reframe.tbl_lazy()# - replace_na.tbl_lazy()# - setdiff.OraConnection()# - setdiff.tbl_lazy()# - setdiff.tbl_Oracle()# - simulate_mariadb()# - sql_escape_ident.default()# - sql_escape_ident.MySQLConnection()# - sql_escape_string.default()# - table_path_components()# - table_path_components.default()# - table_path_name()# - union.tbl_lazy()# - Added Parameters:# - flatten_query.base_query(): con# - flatten_query.multi_join_query(): con# - flatten_query.select_query(): con# - flatten_query.union_query(): con# - flatten_query.values_query(): con# - sql_translation.MySQL(): con# - Removed Functions:# - as_table_ident.character()# - as_table_ident.dbplyr_catalog()# - as_table_ident.dbplyr_schema()# - as_table_ident.dbplyr_table_ident()# - as_table_ident.Id()# - as_table_ident.ident()# - as_table_ident.ident_q()# - as_table_ident.sql()# - escape.dbplyr_table_ident()# - format.dbplyr_table_ident()# - sql_escape_ident.DBIConnection()# - sql_escape_string.DBIConnection()As you can see, many new functions and function parameters have beenadded between these two versions. In addition, there are 12 functionsthat have been removed. It is up to you to determine whether and howthese removals will affect your programs. It is very convenient,however, to have an accurate accounting of package changes. Thesechanges can help you plan your package upgrades and anticipatebreakages.
Another question you may ask when evaluating a package is: How manyversions of a package are there?pkgdiff provides twotools to find version information:pkg_versions() andpkg_repo().
pkg_versions() returns all the versions of a package ina data frame, along with release dates for each version. It works likethis:
# Get package versionspkg_versions("stringr")# Package Version FileName Release Size# 1 stringr 1.5.1 stringr_1.5.1.tar.gz 2023-11-14 172K# 2 stringr 1.5.0 stringr_1.5.0.tar.gz 2022-12-02 172K# 3 stringr 1.4.1 stringr_1.4.1.tar.gz 2022-08-21 133K# 4 stringr 1.4.0 stringr_1.4.0.tar.gz 2019-02-10 133K# 5 stringr 1.3.1 stringr_1.3.1.tar.gz 2018-05-10 116K# 6 stringr 1.3.0 stringr_1.3.0.tar.gz 2018-02-19 116K# 7 stringr 1.2.0 stringr_1.2.0.tar.gz 2017-02-18 92K# 8 stringr 1.1.0 stringr_1.1.0.tar.gz 2016-08-19 62K# 9 stringr 1.0.0 stringr_1.0.0.tar.gz 2015-04-30 34K# 10 stringr 0.6.2 stringr_0.6.2.tar.gz 2012-12-06 20K# 11 stringr 0.6.1 stringr_0.6.1.tar.gz 2012-07-25 20K# 12 stringr 0.6 stringr_0.6.tar.gz 2011-12-08 20K# 13 stringr 0.5 stringr_0.5.tar.gz 2011-06-30 18K# 14 stringr 0.4 stringr_0.4.tar.gz 2010-08-24 16K# 15 stringr 0.3 stringr_0.3.tar.gz 2010-02-15 11K# 16 stringr 0.2 stringr_0.2.tar.gz 2009-11-16 10K# 17 stringr 0.1.10 stringr_0.1.10.tar.gz 2009-11-09 6.8KObserve that thestringr package has had 17releases. The first release was in 2009, and the most recent in 2023.This information is scraped from the CRAN archive site. It is useful forunderstanding the release history of a package, and knowing whichversions of a package are available.
Next, you may want to know which versions of packages you haveinstalled in your R repository. This information can be queried usingthepkg_repo() function. Let’s take a look:
# Check version in repopkg_repo("stringr")# # A package repo object# - Repo Version: 4.4# - Packages:# Package Version# 1 stringr 1.5.1Base on the above information, it appears we have the latest versionofstringr installed in our R 4.4 repo. Good toknow!
Canpkg_repo() be used to get versions for multiplepackages? Yes! Here is how:
# Create vector of packagesv1<-c("curl","dplyr","fmtr","purrr")# Get current versionsres1<-pkg_repo(v1,ver ="current")# View resultsres1# # A package repo object# - Repo Version: 4.4# - Packages:# Package Version# 1 curl 5.2.1# 2 dplyr 1.1.4# 3 fmtr 1.6.5# 4 purrr 1.0.2# Get latest versionsres2<-pkg_repo(v1,ver ="latest")# View resultsres2# # A package repo object# - Repo Version: latest# - Packages:# Package Version# 1 curl 6.2.1# 2 dplyr 1.1.4# 3 fmtr 1.6.8# 4 purrr 1.0.4Moreover, if you runpkg_repo() without any parameters,it will return all the R packages you have installed, along with theirversions. Nice!
Thepkg_repo() function is very useful when dealing withlarge numbers of packages. This function feeds directly into the nexttwo topics, which discuss operations on entire repositories.
One of the main motivations for creatingpkgdiff wasto find a way to better handle repository upgrades. As it stands,repository upgrades can be a chaotic experience. When you have severalhundred packages in your repository, you will surely have some of thembreak when you go to upgrade. Wouldn’t it be nice to at least know whichpackages are going to break? That is the topic of this next section.
First, let’s see how we can anticipate breaking changes on a smallnumber of packages.
For this exercise, we will use theres1 andres2 data frames from the previous section. These dataframes were created usingpkg_repo(), and contain versionnumbers for four R packages. These data frames are in fact perfectinputs to our next function:repo_breakages().
Therepo_breakages() function can compare packages inbulk. It will perform difference operations on any number of packages,and tell you whether or not there will be any breaking changes. As youcan imagine, this function is well suited for repository upgrades. Hereis an example:
# View upgrade breakagesrepo_breakages(res1, res2)# Comparing curl v5.2.1/v6.2.0# Comparing fmtr v1.6.5/v1.6.8# Comparing purrr v1.0.2/v1.0.4# # A repo breakages object# - Run Datetime: 2025-03-01 17:58 UTC# - Summary:# Package Version1 Version2 Breakages# 1 curl 5.2.1 6.2.1 TRUE# 2 dplyr 1.1.4 1.1.4 FALSE# 3 fmtr 1.6.5 1.6.8 FALSE# 4 purrr 1.0.2 1.0.4 FALSE# - Details:# # A difference object: curl package# - Comparing: v5.2.1/v6.2.1# - Breaking Changes: TRUE# - Added Functions: 1# - Added Parameters: 3# - Removed Parameters:# - multi_download(): timeoutTherepo_breakages() function returns a list with twomajor items: “Summary” and “Details”. The “Summary” item is a data frameshowing the input packages, the input package versions, and a TRUE orFALSE flag that describes whether there are any breaking changes betweenthe two package versions. The “details” list item then provides thedifference object for any package that had a breaking change. Thisfunction tells you exactly what you need to know before a repositoryupgrade. If desired, you can then use the difference information to scanyour code, and determine whether those removals will break anything.
The above demonstration showed how to userepo_breakages() on a small number of packages. Now let’ssee how to use the function on a large number of packages. In fact, wewill perform an upgrade analyse on our entire R repository:
# Get current versions from local repor1<-pkg_repo(ver ="current")# View Resultsr1# # A package repo object# - Repo Version: 4.2# - Packages:# Package Version# 1 abind 1.4-5# 2 admiral 0.10.1# 3 admiraldev 0.3.0# 4 admiralonco 0.3.0# 5 ards 0.1.0# 6 arrow 11.0.0.3# 7 askpass 1.1# 8 assertthat 0.2.1# 9 aws.s3 0.3.21# 10 aws.signature 0.6.0# 11 backports 1.4.1# 12 base64enc 0.1-3# 13 bit 4.0.4# 14 bit64 4.0.5# 15 bitops 1.0-7# 16 blob 1.2.3# ...# Get latest versions of current repo on CRANr2<-pkg_repo(r1$Package,ver ="latest")# View Resultsr2# # A package repo object# - Repo Version: latest# - Packages:# Package Version# 1 abind 1.4-8# 2 admiral 1.2.0# 3 admiraldev 1.2.0# 4 admiralonco 1.2.0# 5 ards 0.1.1# 6 arrow 18.1.0.1# 7 askpass 1.2.1# 8 assertthat 0.2.1# 9 aws.s3 0.3.21# 10 aws.signature 0.6.0# 11 backports 1.5.0# 12 base64enc 0.1-3# 13 bit 4.5.0.1# 14 bit64 4.6.0-1# 15 bitops 1.0-9# 16 blob 1.2.4# ...# Check for breakages on whole repositoryres<-repo_breakages(r1, r2)# Comparing abind v1.4-5/v1.4-8# Comparing admiral v0.10.1/v1.2.0# Comparing admiraldev v0.3.0/v1.2.0# Comparing admiralonco v0.3.0/v1.2.0# Comparing ards v0.1.0/v0.1.1# Archive versions of 'ards' not available.# Comparing arrow v11.0.0.3/v18.1.0.1# Comparing askpass v1.1/v1.2.1# Comparing backports v1.4.1/v1.5.0# Comparing bit v4.0.4/v4.5.0.1# Comparing bit64 v4.0.5/v4.6.0-1# Comparing bitops v1.0-7/v1.0-9# Comparing blob v1.2.3/v1.2.4# Comparing box v1.1.3/v1.2.0# Comparing brew v1.0-8/v1.0-10# Comparing brio v1.1.3/v1.1.5# Comparing broom v1.0.1/v1.0.7# Comparing bslib v0.4.0/v0.9.0# Comparing cachem v1.0.6/v1.1.0# Comparing callr v3.7.3/v3.7.6# ...When the processing finishes, you can examine the results usingdollar sign ($) notation:
# View Summary Tableres$Summary# Package Version1 Version2 Breakages# 1 abind 1.4-5 1.4-8 FALSE# 2 admiral 0.10.1 1.2.0 TRUE# 3 admiraldev 0.3.0 1.2.0 TRUE# 4 admiralonco 0.3.0 1.2.0 TRUE# 5 ards 0.1.0 0.1.1 NA# 6 arrow 11.0.0.3 18.1.0.1 FALSE# 7 askpass 1.1 1.2.1 FALSE# 8 assertthat 0.2.1 0.2.1 FALSE# 9 aws.s3 0.3.21 0.3.21 FALSE# 10 aws.signature 0.6.0 0.6.0 FALSE# 11 backports 1.4.1 1.5.0 FALSE# 12 base64enc 0.1-3 0.1-3 FALSE# 13 bit 4.0.4 4.5.0.1 FALSE# 14 bit64 4.0.5 4.6.0-1 TRUE# 15 bitops 1.0-7 1.0-9 FALSE# 16 blob 1.2.3 1.2.4 FALSE# ...# View Difference Detailsres$Details$admiralonco# # A difference object: admiralonco package# - Comparing: v0.3.0/v1.2.0# - Breaking Changes: TRUE# - Added Functions:# - bor_cr()# - bor_ne()# - bor_non_crpd()# - bor_pd()# - bor_pr()# - bor_sd()# - cb_y()# - cbor_cr()# - cbor_pr()# - crsp_y_cr()# - crsp_y_pr()# - no_data_missing()# - no_data_n()# - rsp_y()# - Removed Functions:# - call_aval_fun()# - derive_param_lasta()What is convenient is that you can run these functions before any newpackage versions are downloaded and installed.
They work on archive packages stored on CRAN, not on your local machine.In this way, prior to any actual upgrade, you can make a determinationas to a) whether to proceed with the upgrade or not, and b) how mucheffort it might take to fix any breakages.
In addition to anticipating breakages for a large number of packages,pkgdiff also allows you to gather stability scores fora large number of packages. Bulk stability scores are achieved usingrepo_stability(). Here is how to do it:
# Create vector of packagesv1<-c("curl","dplyr","dbplyr","purrr")# Assess stabilityres<-repo_stability(v1)# Getting stability score for package 'curl'...# Getting stability score for package 'dplyr'...# Getting stability score for package 'dbplyr'...# Getting stability score for package 'purrr'...# View resultsres# # A repo stability object# - Run Datetime: 2025-03-01 17:46 UTC# - Summary:# Package FV LV FR LR TR BR Score Assessment# 1 curl 0.2 6.2.1 2014-11-20 2025-02-19 51 1 98.0 Very Stable# 2 dplyr 0.1 1.1.4 2014-01-16 2023-11-17 45 20 87.5 Somewhat Unstable# 3 dbplyr 1.0.0 2.5.0 2017-06-09 2024-03-19 23 10 74.1 Unstable# 4 purrr 0.1.0 1.0.4 2015-09-28 2025-02-05 18 6 92.1 StableThe above result shows each package on the input vector, the firstand last versions, the first and last release dates, and the totalnumber of releases. It also shows the number of breaking releases, astability score, and a stablity assessment for each package. Thisinformation is very helpful to get an overall sense of the stability ofyour repository, and where breaking changes might occur when theydo.
Likerepo_breakages(),repo_stability() canbe used to assess an entire repository. Simply usepkg_repo() to get the packages in your current repo, andpass the “Packages” column intorepo_stability(). Rememberto giverepo_stability() plenty of uninterrupted processingtime if you are assessing a large number of packages.
For addition research onpkgdiff, you may wish tobrowse the following articles: