| Parameter | Argument | Purpose | Default |
|---|---|---|---|
| \(\small{\alpha}\) | alpha | Nominal level of the test | 0.05 |
| \(\small{\pi}\) | targetpower | Minimum desiredpower | 0.80 |
| \(\small{\theta_0}\) | theta0 | ‘True’ or assumed T/R ratio | 0.90 |
| \(\small{\theta_1}\) | theta1 | Lower BE limit and PE constraint | 0.80 |
| \(\small{\theta_2}\) | theta2 | Upper BE limit and PE constraint | 1.25 |
| CV | CV | CV | none |
| design | design | Planned replicate design | "2x3x3" |
| regulator | regulator | ‘target’ jurisdiction | "EMA" |
| nsims | nsims | Number of simulations | see below |
| nstart | nstart | Start if a previous run failed | none |
| imax | imax | Maximum number of iterations | 100 |
print | Show information in the console? | TRUE | |
| details | details | Show details of the sample size search? | FALSE |
| setseed | setseed | Issue a fixed seed of the random number generator? | TRUE |
Argumentstargetpower,theta0,theta1,theta2, andCV have to begiven as fractions, not in percent.
TheCV is thewithin (intra-) subject coefficient ofvariation. If one value is given, homoscedasticity (equal variances) isassumed and therefore,CVwT =CVwR. If two values are given (i.e.,CV = c(x, y)) heteroscedasticity (unequal variances) isassumed, whereCV[1] has to beCVwT andCV[2]CVwR.
If simulating for power (theta0 within the BE limits),nsims defaults to 100,000. If simulating for the empirictype I error (theta0 set to one of the BE limits),nsims defaults to one million.
# design name df# "2x2x3" 2x2x3 replicate crossover 2n-3# "2x2x4" 2x2x4 replicate crossover 3n-4# "2x3x3" partial replicate (2x3x3) 2n-3The terminology of thedesign argument follows thispattern:treatments x sequences x periods.
Withfoo(..., details = FALSE, print = FALSE) resultsare given as a data frame 1 with eleven columnsDesign,alpha,CVwT,CVwR,theta0,theta1,theta2,Sample size,Achieved power,Target power, andnlast. To accesse.g., the sample size use eitherfoo(...)[1, 8] orfoo(...)[["Sample size"]].We suggest to use the latter in your code for clarity.
The estimated sample size gives always thetotal number of subjects (not subject/sequence – like in someother software packages).
Regulatory conditions and methods of evaluation are different.
# regulator CVswitch CVcap r_const L U pe_constr method# EMA 0.3 0.50000 0.76000 0.6984 1.4319 TRUE ANOVA# HC 0.3 0.57382 0.76000 0.6667 1.5000 TRUE ISC# FDA 0.3 none 0.89257 none none TRUE ISCCVswitch is the lower cap of scaling,i.e., ifCVwR is below this value reference-scaling is notacceptable. The upper cap of scalingCVcap differes betweenthe EMA and HC, whereas for the FDA scaling is unlimited. The regulatoryconstantr_const is used for calculating the expandedlimits (EMA, HC) and ‘implied limits’ (FDA) based onswR:\(\small{\left [ L,U\right ]=100\cdot\exp (\mp 0.760\cdot s_{\textrm{wR}})}\)
HereL andU give the maximum acceptableexpansion based on\(\small{s_{\textrm{wR}}^{*}=\sqrt{\log_{e}(CV_\textrm{cap}^2)+1}}\).The point estimate constraintpe_constr [0.80, 1.25] isapplicable in all regulations. Evaluation has to be performed by ANOVA(EMA) or a mixed-effects model (HC, FDA). For the latter intra-subjectcontrasts are a sufficiently close approximation.
Estimate the sample size for assumed intra-subjectCV 0.55(CVwT = CVwR). Employ thedefaults (theta0 = 0.90,targetpower = 0.80,design = "2x3x3",nsims = 1e5).
Average Bioequivalence with Expanding Limits (ABEL). Defaultregulator = "EMA".
Note that this approach is recommended in other jurisdictions as well(e.g., theWHO;ASEANStates, Australia, Brazil, Chile, the East African Community, Egypt, theEurasian Economic Union, New Zealand, the Russian Federation).
sampleN.scABEL(CV =0.55)## +++++++++++ scaled (widened) ABEL +++++++++++# Sample size estimation# (simulation based on ANOVA evaluation)# ---------------------------------------------# Study design: 2x3x3 (partial replicate)# log-transformed data (multiplicative model)# 1e+05 studies for each step simulated.## alpha = 0.05, target power = 0.8# CVw(T) = 0.55; CVw(R) = 0.55# True ratio = 0.9# ABE limits / PE constraint = 0.8 ... 1.25# EMA regulatory settings# - CVswitch = 0.3# - cap on scABEL if CVw(R) > 0.5# - regulatory constant = 0.76# - pe constraint applied### Sample size search# n power# 39 0.7807# 42 0.8085Whilst in full replicate designs simulating via the ‘key’ statisticsclosely matches the ‘gold standard’ of subject simulations, this is lessso for unequal variances in the partial replicate design ifCVwT >CVwR. Let us keepCVw 0.55 and split variances by a ratio of 1.5(i.e., T has a higher variance than R).
CV<-signif(CVp2CV(CV =0.55,ratio =1.5),4)sampleN.scABEL(CV = CV,details =FALSE)## +++++++++++ scaled (widened) ABEL +++++++++++# Sample size estimation# (simulation based on ANOVA evaluation)# ---------------------------------------------# Study design: 2x3x3 (partial replicate)# log-transformed data (multiplicative model)# 1e+05 studies for each step simulated.## alpha = 0.05, target power = 0.8# CVw(T) = 0.6109; CVw(R) = 0.4852# True ratio = 0.9# ABE limits / PE constraint = 0.8 ... 1.25# Regulatory settings: EMA## Sample size# n power# 45 0.8114Although the runtime will be longer, we recommend the functionsampleN.scABEL.sdsims() instead.
sampleN.scABEL.sdsims(CV = CV,details =FALSE)# Be patient. Simulating subject data may take a while!## +++++++++++ scaled (widened) ABEL +++++++++++# Sample size estimation# (simulation based on ANOVA evaluation)# ---------------------------------------------# Study design: 2x3x3 (partial replicate)# log-transformed data (multiplicative model)# 1e+05 studies for each step simulated.## alpha = 0.05, target power = 0.8# CVw(T) = 0.6109; CVw(R) = 0.4852# True ratio = 0.9# ABE limits / PE constraint = 0.8 ... 1.25# Regulatory settings: EMA## Sample size# n power# 48 0.8161The sample size is slightly larger.
Explore sample sizes for extreme heterogenicity (variance ratio 2.5)via the ‘key’ statistics and subject simulations (4- and 3-period fullreplicate and partial replicate designs).
CVp<-seq(0.40,0.70,0.05)CV<-signif(CVp2CV(CV = CVp,ratio =2.5),4)res<-data.frame(CVp = CVp,CVwT = CV[,1],CVwR = CV[,2],f4.key =NA,f4.ss =NA,# 4-period full replicatef3.key =NA,f3.ss =NA,# 3-period full replicatep3.key =NA,p3.ss =NA)# 3-period partial replicatefor (iinseq_along(CVp)) { res$f4.key[i]<-sampleN.scABEL(CV = CV[i, ],design ="2x2x4",print =FALSE,details =FALSE)[["Sample size"]] res$f4.ss[i]<-sampleN.scABEL.sdsims(CV = CV[i, ],design ="2x2x4",print =FALSE,details =FALSE,progress =FALSE)[["Sample size"]] res$f3.key[i]<-sampleN.scABEL(CV = CV[i, ],design ="2x2x3",print =FALSE,details =FALSE)[["Sample size"]] res$f3.ss[i]<-sampleN.scABEL.sdsims(CV = CV[i, ],design ="2x2x3",print =FALSE,details =FALSE,progress =FALSE)[["Sample size"]] res$p3.key[i]<-sampleN.scABEL(CV = CV[i, ],design ="2x3x3",print =FALSE,details =FALSE)[["Sample size"]] res$p3.ss[i]<-sampleN.scABEL.sdsims(CV = CV[i, ],design ="2x3x3",print =FALSE,details =FALSE,progress =FALSE)[["Sample size"]]}print(res,row.names =FALSE)# CVp CVwT CVwR f4.key f4.ss f3.key f3.ss p3.key p3.ss# 0.40 0.4860 0.2975 62 62 90 90 81 87# 0.45 0.5490 0.3334 60 60 90 90 78 84# 0.50 0.6127 0.3688 54 54 82 82 69 75# 0.55 0.6773 0.4038 50 50 76 76 63 69# 0.60 0.7427 0.4383 46 46 72 72 60 66# 0.65 0.8090 0.4723 46 46 68 68 57 63# 0.70 0.8762 0.5059 46 46 70 70 57 63As shown in the previous example, subject simulations are recommendedfor the partial replicate design. For full replicate designs simulationsvia the ‘key’ statistics give identical results and are recommended forspeed reasons. In this examplesampleN.scABEL() is 60timesfaster thansampleN.scABEL.sdsims().
However, ifCVwT ≤CVwR we getidentical results via the ‘key’ statistics.
Average Bioequivalence with Expanding Limits (ABEL). Defaults asabove butregulator = "HC".
sampleN.scABEL(CV =0.55,regulator ="HC")## +++++++++++ scaled (widened) ABEL +++++++++++# Sample size estimation# (simulations based on intra-subject contrasts)# ----------------------------------------------# Study design: 2x3x3 (partial replicate)# log-transformed data (multiplicative model)# 1e+05 studies for each step simulated.## alpha = 0.05, target power = 0.8# CVw(T) = 0.55; CVw(R) = 0.55# True ratio = 0.9# ABE limits / PE constraint = 0.8 ... 1.25# HC regulatory settings# - CVswitch = 0.3# - cap on scABEL if CVw(R) > 0.57382# - regulatory constant = 0.76# - pe constraint applied### Sample size search# n power# 33 0.7539# 36 0.7864# 39 0.8142Special case of ABEL: Conventional limits ifCVwR≤30% and widened limits of 0.7500–1.3333 otherwise. No upper cap ofwidening. Defaults as above butregulator = "GCC". Only tocompare with previous studies because since in Version 3.1 of 10 August2022 the GCC implemented the EMA’s method.
sampleN.scABEL(CV =0.55,regulator ="GCC")## +++++++++++ scaled (widened) ABEL +++++++++++# Sample size estimation# (simulation based on ANOVA evaluation)# ---------------------------------------------# Study design: 2x3x3 (partial replicate)# log-transformed data (multiplicative model)# 1e+05 studies for each step simulated.## alpha = 0.05, target power = 0.8# CVw(T) = 0.55; CVw(R) = 0.55# True ratio = 0.9# ABE limits / PE constraint = 0.8 ... 1.25# Widened limits = 0.75 ... 1.333333# GCC regulatory settings# - CVswitch = 0.3# - cap on scABEL if CVw(R) > 0.3# - regulatory constant = 0.9799758# - pe constraint applied### Sample size search# n power# 72 0.7874# 75 0.8021Apart from the FDA only required by China’s agency.
sampleN.RSABE(CV =0.55)## ++++++++ Reference scaled ABE crit. +++++++++# Sample size estimation# ---------------------------------------------# Study design: 2x3x3 (partial replicate)# log-transformed data (multiplicative model)# 1e+05 studies for each step simulated.## alpha = 0.05, target power = 0.8# CVw(T) = 0.55; CVw(R) = 0.55# True ratio = 0.9# ABE limits / PE constraints = 0.8 ... 1.25# FDA regulatory settings# - CVswitch = 0.3# - regulatory constant = 0.8925742# - pe constraint applied### Sample size search# n power# 24 0.72002# 27 0.76591# 30 0.80034Note the lower sample size compared to the other approaches (due tothe different regulatory constant and unlimited scaling).
Required by the FDA and the Chinese authority.
Assuming heteroscedasticity (CVw 0.125,σ2 ratio 2.5,i.e., T has a substantiallyhigher variability than R). Details of the sample size searchsuppressed. Assess additionally which one of the three components(scaled, ABE,swT/swR ratio)drives the sample size.
CV<-signif(CVp2CV(CV =0.125,ratio =2.5),4)n<-sampleN.NTID(CV = CV,details =FALSE)[["Sample size"]]## +++++++++++ FDA method for NTIDs ++++++++++++# Sample size estimation# ---------------------------------------------# Study design: 2x2x4 (TRTR|RTRT)# log-transformed data (multiplicative model)# 1e+05 studies for each step simulated.## alpha = 0.05, target power = 0.8# CVw(T) = 0.1497, CVw(R) = 0.09433# True ratio = 0.975# ABE limits = 0.8 ... 1.25# Regulatory settings: FDA## Sample size# n power# 38 0.816080suppressMessages(power.NTID(CV = CV,n = n,details =TRUE))# p(BE) p(BE-sABEc) p(BE-ABE) p(BE-sratio)# 0.81608 0.93848 1.00000 0.85794TheswT/swR component showsthe lowest power and hence, drives the sample size.
Compare that with homoscedasticity(CVwT = CVwR = 0.125):
CV<-0.125n<-sampleN.NTID(CV = CV,details =FALSE)[["Sample size"]]## +++++++++++ FDA method for NTIDs ++++++++++++# Sample size estimation# ---------------------------------------------# Study design: 2x2x4 (TRTR|RTRT)# log-transformed data (multiplicative model)# 1e+05 studies for each step simulated.## alpha = 0.05, target power = 0.8# CVw(T) = 0.125, CVw(R) = 0.125# True ratio = 0.975# ABE limits = 0.8 ... 1.25# Regulatory settings: FDA## Sample size# n power# 16 0.822780suppressMessages(power.NTID(CV = CV,n = n,details =TRUE))# p(BE) p(BE-sABEc) p(BE-ABE) p(BE-sratio)# 0.82278 0.84869 1.00000 0.95128Here the scaled ABE component shows the lowest power and drives thesample size, which is much lower than in the previous example.
Almost a contradiction in itself. Required for [dagibatran] (https://www.accessdata.fda.gov/drugsatfda_docs/psg/Dabigatran%20etexilate%20mesylate_oral%20capsule_NDA%20022512_RV05-17.pdf“Recommended Jun 2012; Revised Sep 2015, Jul 2017”),rivaroxaban, andedoxaban.
Assuming homoscedasticity (CVwT =CVwR = 0.30). Employ the defaults(theta0 = 0.95,targetpower = 0.80,design = "2x2x4",nsims = 1e5). Details of thesample size search suppressed.
sampleN.HVNTID(CV =0.30,details =FALSE)## +++++++++ FDA method for HV NTIDs ++++++++++++# Sample size estimation# ----------------------------------------------# Study design: 2x2x4 (TRTR|RTRT)# log-transformed data (multiplicative model)# 1e+05 studies for each step simulated.## alpha = 0.05, target power = 0.8# CVw(T) = 0.3, CVw(R) = 0.3# True ratio = 0.95# ABE limits = 0.8 ... 1.25## Sample size# n power# 22 0.829700Assuming heteroscedasticity (CVw 0.30,σ2 ratio 2.5).
CV<-signif(CVp2CV(CV =0.125,ratio =2.5),4)sampleN.HVNTID(CV = CV,details =FALSE)## +++++++++ FDA method for HV NTIDs ++++++++++++# Sample size estimation# ----------------------------------------------# Study design: 2x2x4 (TRTR|RTRT)# log-transformed data (multiplicative model)# 1e+05 studies for each step simulated.## alpha = 0.05, target power = 0.8# CVw(T) = 0.1497, CVw(R) = 0.09433# True ratio = 0.95# ABE limits = 0.8 ... 1.25## Sample size# n power# 34 0.818800In this case a substantially higher sample size is required since thevariability of T is higher than the one of R.
Power can by calculated by the counterparts of the respective samplesize functions (instead the argumenttargetpower use theargumentn and provide the observedtheta0),i.e.,power.scABEL(),power.RSABE(),power.NTID(), andpower.HVNTID().
Contrary to average bioequivalence, where the Null-hypothesis isbased on fixed limits, in reference-scaling the Null is generated inface of the data (i.e, the limits are random variables).
Endrényi and Tóthfalusi (2009,2 20193), Labes (20134), Wonnemannetal. (20155), Muñozet al. (20166), Labes and Schütz(20167),Tóthfalusi and Endrényi (2016,8 20179), Molinset al. (201710), Dengand Zhou (201911) showed that under certain conditions(EMA, Health Canada:CVwR ~0.22–0.45, FDA:CVwR ≤0.30) the type I error will be substantiallyinflated.
Below the inflation region the study will be evaluated for ABE and thetype I error controlled by the TOST. Above the inflation region thetype I error is controlled by the PE restriction and for the EMA andHealth Canada additionally by the upper cap of scaling.
CV<-0.35res<-data.frame(n =NA,CV = CV,TIE =NA)res$n<-sampleN.scABEL(CV = CV,design ="2x2x4",print =FALSE,details =FALSE)[["Sample size"]]U<-scABEL(CV = CV)[["upper"]]res$TIE<-power.scABEL(CV = CV,n = res$n,theta0 = U,design ="2x2x4")print(res,row.names =FALSE)# n CV TIE# 34 0.35 0.065566With ~0.0656 the type I error is inflated (significantly larger thanthe nominal\(\small{\alpha}\)0.05).
A substantially higher inflation of the type I error was reported forthe FDA’s model. However, Davitet al. (201212) assessed the type Ierror not at the‘implied limits’ but with the‘desired consumer risk model’ if\(\small{s_{\textrm{wR}}\geq s_0}\)(CVwR ≥~25.4%) at\(\small{\exp\left ( \log_{e}(1.25)/s_0\sqrt{\log_{e}(CV_{\textrm{wR}}^2+1)} \right )}\). Somestatisticians call the latter ‘hocus-pocus’. However, even with thisapproach the type I error is still –although less – inflated.
res<-data.frame(CV =sort(c(seq(0.25,0.32,0.01),se2CV(0.25))),impl.L =NA,impl.U =NA,impl.TIE =NA,des.L =NA,des.U =NA,des.TIE =NA)for (iin1:nrow(res)) { res[i,2:3]<-scABEL(CV = res$CV[i],regulator ="FDA")if (CV2se(res$CV[i])<=0.25) { res[i,5:6]<-c(0.80,1.25) }else { res[i,5:6]<-exp(c(-1,+1)*(log(1.25)/0.25)*CV2se(res$CV[i])) } res[i,4]<-power.RSABE(CV = res$CV[i],theta0 = res[i,3],design ="2x2x4",n =32,nsims =1e6) res[i,7]<-power.RSABE(CV = res$CV[i],theta0 = res[i,5],design ="2x2x4",n =32,nsims =1e6)}print(signif(res,4),row.names =FALSE)# CV impl.L impl.U impl.TIE des.L des.U des.TIE# 0.250 0.8000 1.250 0.06068 0.8000 1.250 0.06036# 0.254 0.8000 1.250 0.06396 0.8000 1.250 0.06357# 0.260 0.8000 1.250 0.07008 0.7959 1.256 0.05692# 0.270 0.8000 1.250 0.08352 0.7892 1.267 0.05047# 0.280 0.8000 1.250 0.10130 0.7825 1.278 0.04770# 0.290 0.8000 1.250 0.12290 0.7760 1.289 0.04644# 0.300 0.8000 1.250 0.14710 0.7695 1.300 0.04562# 0.310 0.7631 1.310 0.04515 0.7631 1.310 0.04466# 0.320 0.7568 1.321 0.04373 0.7568 1.321 0.04325Various approaches were suggested to control the patient’s risk. Themethods of Labes and Schütz (2016) and Molinset al. (2017) areimplemented in the functionscABEL.ad(). The method ofTóthfalusi and Endrényi (2017) is implemented in the functionpower.RSABE2L.sds().
If an inflated type I error is expected,\(\small{\alpha}\) is adjusted based on theobservedCVwR and the study should be evaluated witha wider confidence interval (Labes and Schütz 2016). Implementeddesigns:"2x3x3" (default),"2x2x3","2x2x4".
No adjustment is suggested if the study’s conditions(CVwR, sample size, design) will not lead to aninflated type I error.
CV<-0.45n<-sampleN.scABEL(CV = CV,design ="2x2x4",print =FALSE,details =FALSE)[["Sample size"]]scABEL.ad(CV = CV,design ="2x2x4",n = n)# +++++++++++ scaled (widened) ABEL ++++++++++++# iteratively adjusted alpha# (simulations based on ANOVA evaluation)# ----------------------------------------------# Study design: 2x2x4 (4 period full replicate)# log-transformed data (multiplicative model)# 1,000,000 studies in each iteration simulated.## CVwR 0.45, CVwT 0.45, n(i) 14|14 (N 28)# Nominal alpha : 0.05# True ratio : 0.9000# Regulatory settings : EMA (ABEL)# Switching CVwR : 0.3# Regulatory constant : 0.76# Expanded limits : 0.7215 ... 1.3859# Upper scaling cap : CVwR > 0.5# PE constraints : 0.8000 ... 1.2500# Empiric TIE for alpha 0.0500 : 0.04889# Power for theta0 0.9000 : 0.811# TIE ≤ nominal alpha; no adjustment of alpha is required.Inside the region of inflated type I errors.
CV<-0.35n<-sampleN.scABEL(CV = CV,design ="2x2x4",print =FALSE,details =FALSE)[["Sample size"]]scABEL.ad(CV = CV,design ="2x2x4",n = n)# +++++++++++ scaled (widened) ABEL ++++++++++++# iteratively adjusted alpha# (simulations based on ANOVA evaluation)# ----------------------------------------------# Study design: 2x2x4 (4 period full replicate)# log-transformed data (multiplicative model)# 1,000,000 studies in each iteration simulated.## CVwR 0.35, CVwT 0.35, n(i) 17|17 (N 34)# Nominal alpha : 0.05# True ratio : 0.9000# Regulatory settings : EMA (ABEL)# Switching CVwR : 0.3# Regulatory constant : 0.76# Expanded limits : 0.7723 ... 1.2948# Upper scaling cap : CVwR > 0.5# PE constraints : 0.8000 ... 1.2500# Empiric TIE for alpha 0.0500 : 0.06557# Power for theta0 0.9000 : 0.812# Iteratively adjusted alpha : 0.03630# Empiric TIE for adjusted alpha: 0.05000# Power for theta0 0.9000 : 0.773An adjusted\(\small{\alpha}\) of0.0363 (i.e., the 92.74% CI) controls the patient’s risk.However, it leads to a slightly lower power (0.773 instead of0.812).
In order to counteract this loss in power, we can adjust the samplesize with the functionsampleN.scABEL.ad().
CV<-0.35sampleN.scABEL.ad(CV = CV,design ="2x2x4")## +++++++++++ scaled (widened) ABEL ++++++++++++# Sample size estimation# for iteratively adjusted alpha# (simulations based on ANOVA evaluation)# ----------------------------------------------# Study design: 2x2x4 (4 period full replicate)# log-transformed data (multiplicative model)# 1,000,000 studies in each iteration simulated.## Assumed CVwR 0.35, CVwT 0.35# Nominal alpha : 0.05# True ratio : 0.9000# Target power : 0.8# Regulatory settings: EMA (ABEL)# Switching CVwR : 0.3# Regulatory constant: 0.76# Expanded limits : 0.7723 ... 1.2948# Upper scaling cap : CVwR > 0.5# PE constraints : 0.8000 ... 1.2500# n 38, adj. alpha: 0.03610 (power 0.8100), TIE: 0.05000We have to increase the sample size to 38 in order to maintain power.Since the type I error depends to a minor degree on the sample size aswell, we have to adjust slightly more (\(\small{\alpha}\) 0.0361 instead of 0.0363with 34 subjects).
Since the observedCVwR is not the true –unknown – one, Molinset al. recommended to ‘assume the worst’and adjust forCVwR 0.30 in all cases.
# CV = 0.35, n = 34, design = "2x2x4"# method adj alpha TIE power# EMA (nominal alpha) no 0.05000 0.0656 0.812# Labes and Schütz yes 0.03630 0.0500 0.773# Molins et al. yes 0.02857 0.0500 0.740Although Molin’s adjusted\(\small{\alpha}\) controls the patient’srisk, it leads to a further loss in power.
Example with aCVwR above the region of inflatedtype I errors (i.e., >0.45).
# CV = 0.8, n = 50, design = "2x2x4"# method adj alpha TIE power# Labes and Schütz no 0.0500 0.0496 0.812# Molins et al. yes 0.0282 0.0500 0.732For high variability the negative impact on power is substantial.
Proposed by Tóthfalusi and Endrényi (2016). Example of the ‘ncTOST’method by the same authors (2017). Implemented designs:"2x3x3" (default),"2x2x3","2x2x4".
CV<-0.35n<-sampleN.scABEL(CV = CV,design ="2x2x4",print =FALSE,details =FALSE)[["Sample size"]]U<-scABEL(CV = CV)[["upper"]]# subject simulations and therefore, relatively slowpower.RSABE2L.sds(CV = CV,design ="2x2x4",theta0 = U,n = n,SABE_test ="exact",nsims =1e6,progress =FALSE)# [1] 0.048177With ~0.0482 the patient’s risk is controlled. However, theregulatory acceptance is unclear.
CV<-c(0.30,0.40898,0.50,0.57382)res<-data.frame(CV = CV,EMA.L =NA,EMA.U =NA,EMA.cap ="",HC.L =NA,HC.U =NA,HC.cap ="",GCC.L =NA,GCC.U =NA,GCC.cap ="",stringsAsFactors =FALSE)# this line for R <4.0.0for (iinseq_along(CV)) { res[i,2:3]<-sprintf("%.4f",scABEL(CV[i],regulator ="EMA")) res[i,5:6]<-sprintf("%.3f",scABEL(CV[i],regulator ="HC")) res[i,8:9]<-sprintf("%.3f",scABEL(CV[i],regulator ="GCC"))}res$EMA.cap[res$CV<=0.30]<- res$HC.cap[res$CV<=0.30]<-"lower"res$EMA.cap[res$CV>=0.50]<-"upper"res$HC.cap[res$CV>=0.57382]<-"upper"res$GCC.cap[res$CV<=0.30]<- res$GCC.cap[res$CV<=0.30]<-"lower"print(res,row.names =FALSE)# CV EMA.L EMA.U EMA.cap HC.L HC.U HC.cap GCC.L GCC.U GCC.cap# 0.30000 0.8000 1.2500 lower 0.800 1.250 lower 0.800 1.250 lower# 0.40898 0.7416 1.3484 0.742 1.348 0.750 1.333# 0.50000 0.6984 1.4319 upper 0.698 1.432 0.750 1.333# 0.57382 0.6984 1.4319 upper 0.667 1.500 upper 0.750 1.333For all agencies the lower cap for scaling is 30%. Whereas the uppercap for the EMA is at 50% (expanded limits 69.84–143.19%), for HealthCanada it is at ~57.4% (expanded limits 66.7–150.0%). The GCC had noupper cap (fixed widened limits 75.00–133.33%); since August 2022 theGCC uses the EMA’s method. ### FDA For the FDA there is no upper cap(scaling is unlimited).
res<-data.frame(CV =c(0.25,se2CV(0.25),0.275,0.3,0.5,1.0),impl.L =NA,impl.U =NA,cap ="",stringsAsFactors =FALSE)# this line for R <4.0.0for (iin1:nrow(res)) { res[i,2:3]<-sprintf("%.4f",scABEL(CV = res$CV[i],regulator ="FDA"))}res$cap[res$CV<=0.30]<-"lower"res$CV<-sprintf("%.3f", res$CV)print(res,row.names =FALSE)# CV impl.L impl.U cap# 0.250 0.8000 1.2500 lower# 0.254 0.8000 1.2500 lower# 0.275 0.8000 1.2500 lower# 0.300 0.8000 1.2500 lower# 0.500 0.6560 1.5245# 1.000 0.4756 2.1025res<-data.frame(CV =c(0.25,se2CV(0.25),0.275,0.3,0.5,1.0),des.L =NA,des.U =NA,cap ="",stringsAsFactors =FALSE)# this line for R <4.0.0for (iin1:nrow(res)) {if (CV2se(res$CV[i])<=0.25) { res[i,2:3]<-sprintf("%.4f",c(0.80,1.25)) }else { res[i,2:3]<-sprintf("%.4f",exp(c(-1,+1)*(log(1.25)/0.25)*CV2se(res$CV[i]))) }}res$cap[res$CV<=0.30]<-"lower"res$CV<-sprintf("%.3f", res$CV)print(res,row.names =FALSE)# CV des.L des.U cap# 0.250 0.8000 1.2500 lower# 0.254 0.8000 1.2500 lower# 0.275 0.7858 1.2725 lower# 0.300 0.7695 1.2996 lower# 0.500 0.6560 1.5245# 1.000 0.4756 2.1025reg<-c("EMA","HC","GCC","FDA")for (iin1:4) {print(reg_const(regulator = reg[i]))cat("\n")}# EMA regulatory settings# - CVswitch = 0.3# - cap on scABEL if CVw(R) > 0.5# - regulatory constant = 0.76# - pe constraint applied## HC regulatory settings# - CVswitch = 0.3# - cap on scABEL if CVw(R) > 0.57382# - regulatory constant = 0.76# - pe constraint applied## GCC regulatory settings# - CVswitch = 0.3# - cap on scABEL if CVw(R) > 0.3# - regulatory constant = 0.9799758# - pe constraint applied## FDA regulatory settings# - CVswitch = 0.3# - no cap on scABEL# - regulatory constant = 0.8925742# - pe constraint applied| function | author(s) |
|---|---|
sampleN.scABEL,sampleN.RSABE,sampleN.NTID,sampleN.HVNTID,power.scABEL,power.RSABE2L.sdsims,scABEL,reg_const | Detlew Labes |
power.scABEL.sdsims | Detlew Labes, BenjaminLang |
sampleN.scABEL.ad,sampleN.scABEL.sdsims,sampleN.RSABE2L.sdsims,scABEL.ad | Helmut Schütz |
Endrényi L, Tóthfalusi L.Regulatory and studyconditions for the determination of bioequivalence of highly variabledrugs. J Pharm Sci. 2009: 12(1); 138–49.Openaccess.↩︎
Endrényi L, Tóthfalusi L.Bioequivalence for highlyvariable drugs: regulatory agreements, disagreements, andharmonization. J Pharmacokin Pharmacodyn. 2019: 46(2); 117–26.doi:10.1007/s10928-019-09623-w.↩︎
Labes D.‘alpha’ of scaled ABE? BEBA Forum.Vienna, 2013.Openaccess.↩︎
Wonnemann M, Frömke C, Koch A.Inflation of the TypeI Error: Investigations on Regulatory Recommendations for Bioequivalenceof Highly Variable Drugs. Pharm Res. 2015: 32(1); 135–43.doi:10.1007/s11095-014-1450-z.↩︎
Muñoz J, Alcaide D, Ocaña J.Consumer’s risk in theEMA and FDA regulatory approaches for bioequivalence in highly variabledrugs. Stat Med. 2016: 35(12); 1933–43.doi:10.1002/sim.6834.↩︎
Labes D, Schütz H.Inflation of Type I Error in theEvaluation of Scaled Average Bioequivalence, and a Method for itsControl. Pharm Res. 2016: 33(11); 2805–14.doi:10.1007/s11095-016-2006-1.↩︎
Tóthfalusi L, Endrényi L.An Exact Procedure for theEvaluation of Reference-Scaled Average Bioequivalence. AAPS J.2016: 18(2); 476–89.doi:10.1208/s12248-016-9873-6.↩︎
Tóthfalusi L, Endrényi L.Algorithms for EvaluatingReference Scaled Average Bioequivalence: Power, Bias, and ConsumerRisk. Stat Med. 2017: 36(27); 4378–90.doi:10.1002/sim.7440.↩︎
Molins E, Cobo E, Ocaña J.Two-Stage Designs VersusEuropean Scaled Average Designs in Bioequivalence Studies for HighlyVariable Drugs: Which to Choose? Stat Med. 2017: 36(30); 4777–88.doi:10.1002/sim.7452.↩︎
Deng Y, Zhou X-H.Methods to control the empiricaltype I error rate in average bioequivalence tests for highly variabledrugs. Stat Meth Med Res. 2019: 29(6).doi:10.1177/0962280219871589.↩︎
Davit BM, Chen ML, Conner DP, Haidar SH, Kim S, Lee CH,Lionberger RA, Makhlouf FT, Nwakama PE, Patel DT, Schuirmann DJ, Yu LX.Implementation of a Reference-Scaled Average Bioequivalence Approachfor Highly Variable Generic Drug Products by the US Food and DrugAdministration. AAPS J. 2012: 14(4); 915–24.doi:10.1208/s12248-012-9406-x.↩︎