| Type: | Package |
| Title: | Groupwise Regularized Adaptive Sparse Precision Solution |
| Version: | 0.1.0 |
| Maintainer: | Shiying Xiao <shiying.xiao@outlook.com> |
| Description: | Provides a unified framework for sparse-group regularization and precision matrix estimation in Gaussian graphical models. It implements multiple sparse-group penalties, including sparse-group lasso, sparse-group adaptive lasso, sparse-group SCAD, and sparse-group MCP, and solves them efficiently using ADMM-based optimization. The package is designed for high-dimensional network inference where both sparsity and group structure are present. |
| License: | GPL (≥ 3) |
| URL: | https://github.com/Carol-seven/grasps,https://shiying-xiao.com/grasps/ |
| BugReports: | https://github.com/Carol-seven/grasps/issues |
| Encoding: | UTF-8 |
| Imports: | igraph, ggforce, ggplot2, grDevices, Rcpp, Rdpack, scales |
| LinkingTo: | Rcpp, RcppArmadillo |
| RoxygenNote: | 7.3.3 |
| RdMacros: | Rdpack |
| Suggests: | knitr, MASS, quarto, rmarkdown |
| VignetteBuilder: | knitr, quarto |
| NeedsCompilation: | yes |
| Packaged: | 2025-11-24 04:09:47 UTC; csxiao |
| Author: | Shiying Xiao |
| Repository: | CRAN |
| Date/Publication: | 2025-11-27 19:10:14 UTC |
Penalty Derivative Computation
Description
Compute one or more derivative values for a givenomega, allowingvectorized specifications ofpenalty,lambda, andgamma.
Usage
compute_derivative(omega, penalty, lambda, gamma = NA)Arguments
omega | A numeric value or vector at which the penalty is evaluated. |
penalty | A character string or vector specifying one or more penaltytypes. Available options include:
If |
lambda | A non-negative numeric value or vector specifyingthe regularization parameter.If |
gamma | A numeric value or vector specifying the additional parameterfor the penalty function.If
For |
Value
A data frame with S3 class"derivative" containing:
- omega
The input
omegavalues.- penalty
The penalty type for each row.
- lambda
The regularization parameter used.
- gamma
The additional penalty parameter used.
- value
The computed derivative value.
The number of rows equalsmax(length(penalty), length(lambda), length(gamma)).Any ofpenalty,lambda, orgamma with length 1is recycled to this common length.
References
Candès EJ, Wakin MB, Boyd SP (2008).“Enhancing Sparsity by Reweighted\ell_1 Minimization.”Journal of Fourier Analysis and Applications,14(5), 877–905.doi:10.1007/s00041-008-9045-x.
Fan J, Feng Y, Wu Y (2009).“Network Exploration via the Adaptive LASSO and SCAD Penalties.”The Annals of Applied Statistics,3(2), 521–541.doi:10.1214/08-aoas215.
Fan J, Li R (2001).“Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties.”Journal of the American Statistical Association,96(456), 1348–1360.doi:10.1198/016214501753382273.
Frank LE, Friedman JH (1993).“A Statistical View of Some Chemometrics Regression Tools.”Technometrics,35(2), 109–135.doi:10.1080/00401706.1993.10485033.
Friedman J, Hastie T, Tibshirani R (2008).“Sparse Inverse Covariance Estimation with the Graphical Lasso.”Biostatistics,9(3), 432–441.doi:10.1093/biostatistics/kxm045.
Fu WJ (1998).“Penalized Regressions: The Bridge versus the Lasso.”Journal of Computational and Graphical Statistics,7(3), 397–416.doi:10.1080/10618600.1998.10474784.
Tibshirani R (1996).“Regression Shrinkage and Selection via the Lasso.”Journal of the Royal Statistical Society: Series B (Methodological),58(1), 267–288.doi:10.1111/j.2517-6161.1996.tb02080.x.
Wang Y, Fan Q, Zhu L (2018).“Variable Selection and Estimation using a Continuous Approximation to theL_0 Penalty.”Annals of the Institute of Statistical Mathematics,70(1), 191–214.doi:10.1007/s10463-016-0588-3.
Wang Y, Zhu L (2016).“Variable Selection and Parameter Estimation with the Atan Regularization Method.”Journal of Probability and Statistics,2016, 6495417.doi:10.1155/2016/6495417.
Zhang C (2010).“Nearly Unbiased Variable Selection under Minimax Concave Penalty.”The Annals of Statistics,38(2), 894–942.doi:10.1214/09-AOS729.
Examples
library(grasps)library(ggplot2)deriv_df <- compute_derivative( omega = seq(0, 4, by = 0.01), penalty = c("atan", "exp", "lasso", "lq", "lsp", "mcp", "scad"), lambda = 1)plot(deriv_df) + scale_y_continuous(limits = c(0, 1.5)) + guides(color = guide_legend(nrow = 2, byrow = TRUE))Penalty Function Computation
Description
Compute one or more penalty values for a givenomega, allowingvectorized specifications ofpenalty,lambda, andgamma.
Usage
compute_penalty(omega, penalty, lambda, gamma = NA)Arguments
omega | A numeric value or vector at which the penalty is evaluated. |
penalty | A character string or vector specifying one or more penaltytypes. Available options include:
If |
lambda | A non-negative numeric value or vector specifyingthe regularization parameter.If |
gamma | A numeric value or vector specifying the additional parameterfor the penalty function.If
For |
Value
A data frame with S3 class"penalty" containing:
- omega
The input
omegavalues.- penalty
The penalty type for each row.
- lambda
The regularization parameter used.
- gamma
The additional penalty parameter used.
- value
The computed penalty value.
The number of rows equalsmax(length(penalty), length(lambda), length(gamma)).Any ofpenalty,lambda, orgamma with length 1is recycled to this common length.
References
Candès EJ, Wakin MB, Boyd SP (2008).“Enhancing Sparsity by Reweighted\ell_1 Minimization.”Journal of Fourier Analysis and Applications,14(5), 877–905.doi:10.1007/s00041-008-9045-x.
Fan J, Feng Y, Wu Y (2009).“Network Exploration via the Adaptive LASSO and SCAD Penalties.”The Annals of Applied Statistics,3(2), 521–541.doi:10.1214/08-aoas215.
Fan J, Li R (2001).“Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties.”Journal of the American Statistical Association,96(456), 1348–1360.doi:10.1198/016214501753382273.
Frank LE, Friedman JH (1993).“A Statistical View of Some Chemometrics Regression Tools.”Technometrics,35(2), 109–135.doi:10.1080/00401706.1993.10485033.
Friedman J, Hastie T, Tibshirani R (2008).“Sparse Inverse Covariance Estimation with the Graphical Lasso.”Biostatistics,9(3), 432–441.doi:10.1093/biostatistics/kxm045.
Fu WJ (1998).“Penalized Regressions: The Bridge versus the Lasso.”Journal of Computational and Graphical Statistics,7(3), 397–416.doi:10.1080/10618600.1998.10474784.
Tibshirani R (1996).“Regression Shrinkage and Selection via the Lasso.”Journal of the Royal Statistical Society: Series B (Methodological),58(1), 267–288.doi:10.1111/j.2517-6161.1996.tb02080.x.
Wang Y, Fan Q, Zhu L (2018).“Variable Selection and Estimation using a Continuous Approximation to theL_0 Penalty.”Annals of the Institute of Statistical Mathematics,70(1), 191–214.doi:10.1007/s10463-016-0588-3.
Wang Y, Zhu L (2016).“Variable Selection and Parameter Estimation with the Atan Regularization Method.”Journal of Probability and Statistics,2016, 6495417.doi:10.1155/2016/6495417.
Zhang C (2010).“Nearly Unbiased Variable Selection under Minimax Concave Penalty.”The Annals of Statistics,38(2), 894–942.doi:10.1214/09-AOS729.
Examples
library(grasps)library(ggplot2)pen_df <- compute_penalty( omega = seq(-4, 4, by = 0.01), penalty = c("atan", "exp", "lasso", "lq", "lsp", "mcp", "scad"), lambda = 1)plot(pen_df, xlim = c(-1, 1), ylim = c(0, 1), zoom.size = 1) + guides(color = guide_legend(nrow = 2, byrow = TRUE))Block-Structured Precision Matrix based on SBM
Description
Generate a precision matrix that exhibits block structure induced bya stochastic block model (SBM).
Usage
gen_prec_sbm( d, block.sizes = NULL, K = 3, prob.mat = NULL, within.prob = 0.25, between.prob = 0.05, weight.mat = NULL, weight.dists = list("gamma", "unif"), weight.paras = list(c(shape = 100, rate = 10), c(min = 0, max = 5)), cond.target = 100)Arguments
d | An integer specifying the number of variables (dimensions). |
block.sizes | An integer vector (default = |
K | An integer (default = 3) specifying the number of groups.Ignored if |
prob.mat | A |
within.prob | A numeric value in [0, 1] (default = 0.25) specifyingthe probability of creating an edge between vertices within the same group.This argument is used only when |
between.prob | A numeric value in [0, 1] (default = 0.05) specifyingthe probability of creating an edge between vertices from different groups.This argument is used only when |
weight.mat | A |
weight.dists | A list (default =
Each element of
|
weight.paras | A list(default = |
cond.target | A numeric value > 1 (default = 100) specifying the targetcondition number for the precision matrix. When necessary, a diagonal shiftis applied to ensure positive definiteness and numerical stability. |
Details
Edge sampling.Within- and between-group edges are sampled independently according toBernoulli distributions specified byprob.mat, or bywithin.probandbetween.prob ifprob.mat is not supplied.
Weight sampling.Conditional on the adjacency structure, edge weights are sampled block-wisefrom samplers specified inweight.dists andweight.paras.The length ofweight.dists (andweight.paras) determines howweight distributions are assigned:
length = 1: Same specification for all blocks.
length = 2: first for within-group blocks, second for between-groupblocks.
length =
K + K(K-1)/2: Full specification for each block.
Block indexing.The order for blocks is:
Within-group blocks: Indices
1, \dots, K.Between-group blocks:
K(K-1)/2blocks in order(1,2),(1,3),(1,4), ...,(1,K),(2,3), ...,(K-1,K).
Positive definiteness.The weighted adjacency matrix is symmetrized and used as the precision matrix\Omega_0. Since arbitrary block-structured weights may not be positivedefinite, a diagonal adjustment is applied to control the eigenvalue spectrum.Specifically, let\lambda_{\max} and\lambda_{\min} denotethe largest and smallest eigenvalues of a matrix. A non-negative numericvalue\tau is added to the diagonal so that
\left\{\begin{array}{l}\dfrac{\lambda_{\max}(\Omega_0 + \tau I)}{\lambda_{\min}(\Omega_0 + \tau I)}\leq \texttt{cond.target} \\[1em]\lambda_{\min}(\Omega_0 + \tau I) > 0 \\[.5em]\tau \geq 0\end{array}\right.
which ensures both positive definiteness and guarantees that the conditionnumber does not exceedcond.target, providing numerical stabilityeven in high-dimensional settings.
Value
An object with S3 class"gen_prec_sbm" containing the followingcomponents:
- Omega
The precision matrix with SBM block structure.
- Sigma
The covariance matrix, i.e., the inverse of
Omega.- sparsity
Proportion of zero entries in
Omega.- membership
An integer vector specifying the group membership.
Examples
library(grasps)## reproducibility for everythingset.seed(1234)## block-structured precision matrix based on SBM#### case 1: base R distributionsim1 <- gen_prec_sbm(d = 100, K = 5, within.prob = 0.25, between.prob = 0.1, weight.dists = list("gamma", "unif"), weight.paras = list(c(shape = 100, scale = 1e2), c(min = 0, max = 10)), cond.target = 100)#### visualizationplot(sim1)#### case 2: user-defined samplermy_gamma <- function(n) { rgamma(n, shape = 1e4, scale = 1e2)}sim2 <- gen_prec_sbm(d = 100, K = 5, within.prob = 0.2, between.prob = 0.05, weight.dists = list(my_gamma, "unif"), weight.paras = list(NULL, c(min = 0, max = 1)), cond.target = 100)#### visualizationplot(sim2)Groupwise Regularized Adaptive Sparse Precision Solution
Description
Provide a collection of statistical methods that incorporate bothelement-wise and group-wise penalties to estimate a precision matrix.
Usage
grasps( X, n = nrow(X), membership, penalty, diag.ind = TRUE, diag.grp = TRUE, diag.include = FALSE, lambda = NULL, alpha = NULL, gamma = NULL, nlambda = 10, lambda.min.ratio = 0.01, growiter.lambda = 30, tol.lambda = 0.001, maxiter.lambda = 50, rho = 2, tau.incr = 2, tau.decr = 2, nu = 10, tol.abs = 1e-04, tol.rel = 1e-04, maxiter = 10000, crit = "BIC", kfold = 5, ebic.tuning = 0.5)Arguments
X |
|
n | An integer (default = |
membership | An integer vector specifying the group membership.The length of |
penalty | A character string specifying the penalty for estimatingprecision matrix. Available options include:
|
diag.ind | A logical value (default = TRUE) specifying whether topenalize the diagonal elements. |
diag.grp | A logical value (default = TRUE) specifying whether topenalize the within-group blocks. |
diag.include | A logical value (default = FALSE) specifying whether toinclude the diagonal entries in the penalty for within-group blocks when |
lambda | A non-negative numeric vector specifying the grid forthe regularization parameter. The default is |
alpha | A numeric vector in [0, 1] specifying the grid forthe mixing parameter balancing the element-wise individual L1 penalty andthe block-wise group L2 penalty.An alpha of 1 corresponds to the individual penalty only; an alpha of 0corresponds to the group penalty only.The default value is a sequence from 0.1 to 0.9 with increments of 0.1. |
gamma | A numeric value specifying the additional parameter fothe chosen
|
nlambda | An integer (default = 10) specifying the number of |
lambda.min.ratio | A numeric value > 0 (default = 0.01) specifyingthe fraction of the maximum |
growiter.lambda | An integer (default = 30) specifying the maximumnumber of exponential growth steps during the initial search for anadmissible upper bound |
tol.lambda | A numeric value > 0 (default = 1e-03) specifyingthe relative tolerance for the bisection stopping rule on the interval width. |
maxiter.lambda | An integer (default = 50) specifying the maximum numberof bisection iterations in the line search for |
rho | A numeric value > 0 (default = 2) specifying the ADMMaugmented-Lagrangian penalty parameter (often called the ADMM step size).Larger values typically put more weight on enforcing the consensusconstraints at each iteration; smaller values yield more conservative updates. |
tau.incr | A numeric value > 1 (default = 2) specifyingthe multiplicative factor used to increase |
tau.decr | A numeric value > 1 (default = 2) specifyingthe multiplicative factor used to decrease |
nu | A numeric value > 1 (default = 10) controlling how aggressively |
tol.abs | A numeric value > 0 (default = 1e-04) specifying the absolutetolerance for ADMM stopping (applied to primal/dual residual norms). |
tol.rel | A numeric value > 0 (default = 1e-04) specifying the relativetolerance for ADMM stopping (applied to primal/dual residual norms). |
maxiter | An integer (default = 1e+04) specifying the maximum number ofADMM iterations. |
crit | A character string (default = "BIC") specifying the parameterselection criterion to use. Available options include:
|
kfold | An integer (default = 5) specifying the number of folds used for |
ebic.tuning | A numeric value in [0, 1] (default = 0.5) specifyingthe tuning parameter to calculate for |
Value
An object with S3 class"grasps" containing the following components:
- hatOmega
The estimated precision matrix.
- lambda
The optimal regularization parameter.
- alpha
The optimal mixing parameter.
- initial
The initial estimate of
hatOmegawhen a non-convexpenalty is chosen viapenalty.- gamma
The optimal addtional parameter when a non-convex penaltyis chosen via
penalty.- iterations
The number of ADMM iterations.
- lambda.grid
The actual lambda grid used in the program.
- alpha.grid
The actual alpha grid used in the program.
- lambda.safe
The bisection-refined upper bound
\lambda_{\max},corresponding toalpha.grid, whenlambda = NULL.- loss
The optimal k-fold loss when
crit = "CV".- CV.loss
Matrix of CV losses, with rows for parameter combinations andcolumns for CV folds, when
crit = "CV".- score
The optimal information criterion score when
critis setto"AIC","BIC","EBIC", or"HBIC".- IC.score
The information criterion score for each parametercombination when
critis set to"AIC","BIC","EBIC", or"HBIC".- membership
The group membership.
References
Akaike H (1973).“Information Theory and an Extension of the Maximum Likelihood Principle.”In Petrov BN, Csáki F (eds.),Second International Symposium on Information Theory, 267–281.Akad\'emiai Kiad\'o, Budapest, Hungary.
Candès EJ, Wakin MB, Boyd SP (2008).“Enhancing Sparsity by Reweighted\ell_1 Minimization.”Journal of Fourier Analysis and Applications,14(5), 877–905.doi:10.1007/s00041-008-9045-x.
Chen J, Chen Z (2008).“Extended Bayesian Information Criteria for Model Selection with Large Model Spaces.”Biometrika,95(3), 759–771.doi:10.1093/biomet/asn034.
Fan J, Feng Y, Wu Y (2009).“Network Exploration via the Adaptive LASSO and SCAD Penalties.”The Annals of Applied Statistics,3(2), 521–541.doi:10.1214/08-aoas215.
Fan J, Li R (2001).“Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties.”Journal of the American Statistical Association,96(456), 1348–1360.doi:10.1198/016214501753382273.
Fan J, Liu H, Ning Y, Zou H (2017).“High Dimensional Semiparametric Latent Graphical Model for Mixed Data.”Journal of the Royal Statistical Society Series B: Statistical Methodology,79(2), 405–421.doi:10.1111/rssb.12168.
Foygel R, Drton M (2010).“Extended Bayesian Information Criteria for Gaussian Graphical Models.”In Lafferty J, Williams C, Shawe-Taylor J, Zemel R, Culotta A (eds.),Advances in Neural Information Processing Systems 23 (NIPS 2010), 604–612.https://dl.acm.org/doi/10.5555/2997189.2997257.
Frank LE, Friedman JH (1993).“A Statistical View of Some Chemometrics Regression Tools.”Technometrics,35(2), 109–135.doi:10.1080/00401706.1993.10485033.
Friedman J, Hastie T, Tibshirani R (2008).“Sparse Inverse Covariance Estimation with the Graphical Lasso.”Biostatistics,9(3), 432–441.doi:10.1093/biostatistics/kxm045.
Fu WJ (1998).“Penalized Regressions: The Bridge versus the Lasso.”Journal of Computational and Graphical Statistics,7(3), 397–416.doi:10.1080/10618600.1998.10474784.
Schwarz G (1978).“Estimating the Dimension of a Model.”The Annals of Statistics,6(2), 461–464.doi:10.1214/aos/1176344136.
Tibshirani R (1996).“Regression Shrinkage and Selection via the Lasso.”Journal of the Royal Statistical Society: Series B (Methodological),58(1), 267–288.doi:10.1111/j.2517-6161.1996.tb02080.x.
Wang L, Kim Y, Li R (2013).“Calibrating Nonconvex Penalized Regression in Ultra-High Dimension.”The Annals of Statistics,41(5), 2505–2536.doi:10.1214/13-AOS1159.
Wang Y, Fan Q, Zhu L (2018).“Variable Selection and Estimation using a Continuous Approximation to theL_0 Penalty.”Annals of the Institute of Statistical Mathematics,70(1), 191–214.doi:10.1007/s10463-016-0588-3.
Wang Y, Zhu L (2016).“Variable Selection and Parameter Estimation with the Atan Regularization Method.”Journal of Probability and Statistics,2016, 6495417.doi:10.1155/2016/6495417.
Zhang C (2010).“Nearly Unbiased Variable Selection under Minimax Concave Penalty.”The Annals of Statistics,38(2), 894–942.doi:10.1214/09-AOS729.
Zou H (2006).“The Adaptive Lasso and Its Oracle Properties.”Journal of the American Statistical Association,101(476), 1418–1429.doi:10.1198/016214506000000735.
Examples
library(grasps)## reproducibility for everythingset.seed(1234)## block-structured precision matrix based on SBMsim <- gen_prec_sbm(d = 30, K = 3, within.prob = 0.25, between.prob = 0.05, weight.dists = list("gamma", "unif"), weight.paras = list(c(shape = 20, rate = 10), c(min = 0, max = 5)), cond.target = 100)## visualizationplot(sim)## n-by-d data matrixlibrary(MASS)X <- mvrnorm(n = 20, mu = rep(0, 30), Sigma = sim$Sigma)## adapt, HBICres <- grasps(X = X, membership = sim$membership, penalty = "adapt", crit = "HBIC")## visualizationplot(res)## performanceperformance(hatOmega = res$hatOmega, Omega = sim$Omega)Performance Measures for Precision Matrix Estimation
Description
Compute a collection of loss-based and structure-based measures to evaluatethe performance of an estimated precision matrix.
Usage
performance(hatOmega, Omega)Arguments
hatOmega | A numeric |
Omega | A numeric |
Details
Let\Omega_{d \times d} and\hat{\Omega}_{d \times d} bethe reference (true) and estimated precision matrices, respectively, with\Sigma = \Omega^{-1} being the corresponding covariance matrix.Edges are defined by nonzero off-diagonal entries in the upper triangle ofthe precision matrices.
Sparsity is treated as a structural summary, while the remaining measuresare grouped into loss-based measures, raw confusion-matrix counts, andclassification-based (structure-recovery) measures.
"sparsity": Sparsity is computed as the proportion of zero entries amongthe off-diagonal elements in the upper triangle of\hat{\Omega}.
Loss-based measures:
"Frobenius": Frobenius (Hilbert-Schmidt) norm loss
= \Vert \Omega - \hat{\Omega} \Vert_F."KL": Kullback-Leibler divergence
= \mathrm{tr}(\Sigma \hat{\Omega}) - \log\det(\Sigma \hat{\Omega}) - d."quadratic": Quadratic norm loss
= \Vert \Sigma \hat{\Omega} - I_d \Vert_F^2."spectral": Spectral (operator) norm loss
= \Vert \Omega - \hat{\Omega} \Vert_{2,2} = e_1,wheree_1^2is the largest eigenvalue of(\Omega - \hat{\Omega})^2.
Confusion-matrix counts:
"TP": True positive
=number of edgesin both\Omegaand\hat{\Omega}."TN": True negative
=number of edgesin neither\Omeganor\hat{\Omega}."FP": False positive
=number of edgesin\hat{\Omega}but not in\Omega."FN": False negative
=number of edgesin\Omegabut not in\hat{\Omega}.
Classification-based (structure-recovery) measures:
"TPR": True positive rate (TPR), recall, sensitivity
= \mathrm{TP} / (\mathrm{TP} + \mathrm{FN})."FPR": False positive rate (FPR)
= \mathrm{FP} / (\mathrm{FP} + \mathrm{TN})."F1":
F_1score= 2\,\mathrm{TP} / (2\,\mathrm{TP} + \mathrm{FN} + \mathrm{FP})"MCC": Matthews correlation coefficient (MCC)
= (\mathrm{TP}\times\mathrm{TN} - \mathrm{FP}\times\mathrm{FN}) /\sqrt{(\mathrm{TP}+\mathrm{FP})(\mathrm{TP}+\mathrm{FN})(\mathrm{TN}+\mathrm{FP})(\mathrm{TN}+\mathrm{FN})}
The following table summarizes the confusion matrix and related rates:
| Predicted Positive | Predicted Negative | |||
| Real Positive (P) | True positive (TP) | False negative (FN) | True positive rate (TPR), recall, sensitivity = TP / P = 1 - FNR | False negative rate (FNR) = FN / P = 1 - TPR |
| Real Negative (N) | False positive (FP) | True negative (TN) | False positive rate (FPR) = FP / N = 1 - TNR | True negative rate (TNR), specificity = TN / N = 1 - FPR |
| Positive predictive value (PPV), precision = TP / (TP + FP) = 1 - FDR | False omission rate (FOR) = FN / (TN + FN) = 1 - NPV | |||
| False discovery rate (FDR) = FP / (TP + FP) = 1 - PPV | Negative predictive value (NPV) = TN / (TN + FN) = 1 - FOR |
Value
A data frame of S3 class"performance", with one row per performancemetric and two columns:
- measure
The name of each performance metric. The reported metricsinclude: sparsity, Frobenius norm loss, Kullback-Leibler divergence,quadratic norm loss, spectral norm loss, true positive, true negative,false positive, false negative, true positive rate, false positive rate,F1 score, and Matthews correlation coefficient.
- value
The corresponding numeric value.
Examples
library(grasps)## reproducibility for everythingset.seed(1234)## block-structured precision matrix based on SBMsim <- gen_prec_sbm(d = 30, K = 3, within.prob = 0.25, between.prob = 0.05, weight.dists = list("gamma", "unif"), weight.paras = list(c(shape = 20, rate = 10), c(min = 0, max = 5)), cond.target = 100)## visualizationplot(sim)## n-by-d data matrixlibrary(MASS)X <- mvrnorm(n = 20, mu = rep(0, 30), Sigma = sim$Sigma)## adapt, BICres <- grasps(X = X, membership = sim$membership, penalty = "adapt", crit = "BIC")## visualizationplot(res)## performanceperformance(hatOmega = res$hatOmega, Omega = sim$Omega)Plot Function for Block-Structured Precision Matrices(Visualize a Matrix with Group Boundaries)
Description
Visualize a precision matrix as a heatmap with dashed boundary linesseparating group blocks. This function is shared by objects returned fromgrasps,gen_prec_sbm, andsparsify_block_banded, all of which inherit fromthe S3 class"blkmat".
Usage
## S3 method for class 'blkmat'plot(x, colors = NULL, ...)Arguments
x | An object inheriting from S3 class |
colors | A vector of colors specifying an n-color gradient scale forthe fill aesthetics. |
... | Additional arguments passed to |
Value
A heatmap of classggplot showing the matrix entries.Dashed lines indicate group boundaries.The plot title also reports matrix dimension and sparsity.
Examples
library(grasps)## reproducibility for everythingset.seed(1234)## block-structured precision matrix based on SBMsim <- gen_prec_sbm(d = 100, K = 10, within.prob = 0.2, between.prob = 0.05, weight.dists = list("gamma", "unif"), weight.paras = list(c(shape = 100, scale = 10), c(min = 0, max = 5)), cond.target = 100)## visualizationplot(sim)Plot Function for S3 Class "penderiv"
Description
Generate a visualization of penalty functions produced bycompute_penalty, or penalty derivatives produced bycompute_derivative.The plot automatically summarizes multiple configurations of penalty type,\lambda, and\gamma. Optional zooming is supported throughfacet_zoom.
Usage
## S3 method for class 'penderiv'plot(x, ...)Arguments
x | An object inheriting from S3 class |
... | Optional arguments passed to |
Value
An object of classggplot.
Examples
library(grasps)library(ggplot2)pen_df <- compute_penalty( omega = seq(-4, 4, by = 0.01), penalty = c("atan", "exp", "lasso", "lq", "lsp", "mcp", "scad"), lambda = 1)plot(pen_df, xlim = c(-1, 1), ylim = c(0, 1), zoom.size = 1) + guides(color = guide_legend(nrow = 2, byrow = TRUE))deriv_df <- compute_derivative( omega = seq(0, 4, by = 0.01), penalty = c("atan", "exp", "lasso", "lq", "lsp", "mcp", "scad"), lambda = 1)plot(deriv_df) + scale_y_continuous(limits = c(0, 1.5)) + guides(color = guide_legend(nrow = 2, byrow = TRUE))Groupwise Block-Banded Sparsifier
Description
Make a precision-like matrix block-banded according to group membership,keeping only entries within specified group neighborhoods.
Usage
sparsify_block_banded(mat, membership, neighbor.range = 1)Arguments
mat | A |
membership | An integer vector specifying the group membership.The length of |
neighbor.range | An integer (default = 1) specifying the neighbor range,where groups whose labels differ by at most |
Value
An object with S3 class"sparsify_block_banded" containingthe following components:
- Omega
The masked precision matrix.
- Sigma
The covariance matrix, i.e., the inverse of
Omega.- sparsity
Proportion of zero entries in
Omega.- membership
An integer vector specifying the group membership.
Examples
library(grasps)## reproducibility for everythingset.seed(1234)## precision matrix estimationX <- matrix(rnorm(200), 10, 20)membership <- c(rep(1,5), rep(2,5), rep(3,4), rep(4,6))est <- grasps(X, membership = membership, penalty = "lasso", crit = "BIC")## default: keep blocks within ±1 of each groupres1 <- sparsify_block_banded(est$hatOmega, membership, neighbor.range = 1)plot(res1)## wider band: keep blocks within ±2 of each groupres2 <- sparsify_block_banded(est$hatOmega, membership, neighbor.range = 2)plot(res2)## special case: block-diagonal matrixres3 <- sparsify_block_banded(est$hatOmega, membership, neighbor.range = 0)plot(res3)