| Type: | Package |
| Title: | Vertical Weighted Strips |
| Version: | 0.3.0 |
| Maintainer: | Andrew M. Raim <andrew.raim@gmail.com> |
| Description: | A reference implementation of the Vertical Weighted Strips method explored by Raim, Livsey, and Irimata (2025) <doi:10.48550/arXiv.2401.09696> for rejection sampling. |
| URL: | https://github.com/andrewraim/vws |
| License: | MIT + file LICENSE |
| Encoding: | UTF-8 |
| RoxygenNote: | 7.3.3 |
| Depends: | R (≥ 4.1.0) |
| Imports: | Rcpp, fntl |
| LinkingTo: | Rcpp, fntl |
| Suggests: | knitr, rmarkdown, quarto, statmod, tidyverse |
| VignetteBuilder: | quarto |
| NeedsCompilation: | yes |
| Packaged: | 2025-11-06 15:34:48 UTC; araim |
| Author: | Andrew M. Raim [aut, cre] |
| Repository: | CRAN |
| Date/Publication: | 2025-11-11 21:20:02 UTC |
vws
Description
Package documentation
Author(s)
Maintainer: Andrew M. Raimandrew.raim@gmail.com
See Also
Useful links:
Categorical Distribution
Description
Draw variates from a categorical distribution.
Usage
r_categ(n, p, log = FALSE, one_based = FALSE)Arguments
n | Number of desired draws. |
p | Vector of |
log | logical; if |
one_based | logical; if |
Value
A vector ofn draws.
Examples
p = c(0.1, 0.2, 0.3, 0.4)lp = log(p)set.seed(1234)r_categ(50, p, log = FALSE, one_based = FALSE)r_categ(50, p, log = FALSE, one_based = TRUE)set.seed(1234)r_categ(50, lp, log = TRUE, one_based = FALSE)r_categ(50, lp, log = TRUE, one_based = TRUE)Gumbel Distribution
Description
Functions for the Gumbel distribution with density
f(x \mid \mu, \sigma) =\frac{1}{\sigma}\exp\{ -\{ (x - \mu) / \sigma + e^{-(x - \mu) / \sigma} \} \}
Usage
r_gumbel(n, mu = 0, sigma = 1)d_gumbel(x, mu = 0, sigma = 1, log = FALSE)p_gumbel(q, mu = 0, sigma = 1, lower = TRUE, log = FALSE)q_gumbel(p, mu = 0, sigma = 1, lower = TRUE, log = FALSE)Arguments
n | Number of draws. |
mu | Location parameter. |
sigma | Scale parameter. |
x | Vector; argument of density. |
log | Logical; if |
q | Vector; argument of quantile function. |
lower | Logical; if |
p | Vector; argument of cumulative distribution function. |
Value
d_gumbel computes the density,r_gumbel generates random deviates,p_gumbel computes the CDF, andq_gumbel computes quantiles. A vector isreturned by each.
Examples
mu = 1sigma = 2x = r_gumbel(100000, mu, sigma)xx = seq(min(x), max(x), length.out = 100)plot(density(x))lines(xx, d_gumbel(xx, mu, sigma), lty = 2, col = "blue", lwd = 2)plot(ecdf(x))lines(xx, p_gumbel(xx, mu, sigma), lty = 2, col = "blue", lwd = 2)pp = seq(0, 1, length.out = 102) |> head(-1) |> tail(-1)qq = quantile(x, probs = pp)plot(pp, qq)lines(pp, q_gumbel(pp, mu, sigma), lty = 2, col = "blue", lwd = 2)Printing
Description
Functions to print messages using ansprintf syntax.
Usage
printf(fmt, ...)logger(fmt, ..., dt_fmt = "%Y-%m-%d %H:%M:%S", join = " - ")fprintf(file, fmt, ...)Arguments
fmt | Format string which can be processed by |
... | Additional arguments |
dt_fmt | Format string which can be processed by |
join | A string to place between the timestamp and the message. |
file | A connection, or a character string naming the file to print to |
Value
None (invisibleNULL); functions are called for side effects.
Examples
printf("Hello world %f %d\n", 0.1, 5)logger("Hello world\n")logger("Hello world %f %d\n", 0.1, 5)logger("Hello world %f %d\n", 0.1, 5, dt_fmt = "%H:%M:%S")logger("Hello world %f %d\n", 0.1, 5, join = " >> ")logger("Hello world %f %d\n", 0.1, 5, join = " ")Log-Sum-Exp
Description
Compute arithmetic on the log-scale in a more stable way than directlytaking logarithm and exponentiating.
Usage
log_sum_exp(x)log_add2_exp(x, y)log_sub2_exp(x, y)Arguments
x | A numeric vector. |
y | A numeric vector; it should have the same length as |
Details
The functionlog_sum_exp computeslog(sum(exp(x))) using the method inStackExchange posthttps://stats.stackexchange.com/a/381937.
The functionslog_add2_exp andlog_sub2_exp computelog(exp(x) + exp(y)) andlog(exp(x) - exp(y)), respectively.The functionlog_sub2_exp expects that each element ofx islarger than or equal to its corresponding element iny. Otherwise,NaN will be returned with a warning.
Value
log_add2_exp andlog_sub2_exp return a vector of pointwise resultswhoseith element is the result based onx[i] andy[i].log_sum_exp returns a single scalar.
Examples
pi = 1:6 / sum(1:6)x = log(2*pi)log(sum(exp(x)))log_sum_exp(x)# Result should be 0x = c(-Inf -Inf, 0)log_sum_exp(x)# Result should be -Infx = c(-Inf -Inf, -Inf)log_sum_exp(x)# Result should be Infx = c(-Inf -Inf, Inf)log_sum_exp(x)# Result should be 5 on the original scaleout = log_add2_exp(log(3), log(2))exp(out)# Result should be 7 on the original scaleout = log_sub2_exp(log(12), log(5))exp(out)Hybrid Univariate Optimization
Description
Use Brent's method if a bounded search interval is specified. Otherwise useBFGS method.
Usage
optimize_hybrid(f, init, lower, upper, maximize = FALSE, maxiter = 10000L)Arguments
f | Objective function. Should take a scalar as an argument. |
init | Initial value for optimization variable. |
lower | Lower bound for search; may be |
upper | Upper bound for search; may be |
maximize | logical; if |
maxiter | Maximum number of iterations. |
Value
A list with the following elements.
par | Value of optimization variable. |
value | Value of optimization function. |
method | Description of result. |
status | Status code from BFGS or |
Examples
f = function(x) { x^2 }optimize_hybrid(f, init = 0, lower = -1, upper = 2, maximize = FALSE)optimize_hybrid(f, init = 0, lower = -1, upper = Inf, maximize = FALSE)optimize_hybrid(f, init = 0, lower = -Inf, upper = 1, maximize = FALSE)optimize_hybrid(f, init = 0, lower = 0, upper = Inf, maximize = FALSE)optimize_hybrid(f, init = 0, lower = -Inf, upper = 0, maximize = FALSE)f = function(x) { 1 - x^2 }optimize_hybrid(f, init = 0, lower = -1, upper = 1, maximize = TRUE)optimize_hybrid(f, init = 0, lower = -1, upper = 0, maximize = TRUE)optimize_hybrid(f, init = 0, lower = 0, upper = 1, maximize = TRUE)Rectangular transformation
Description
A transformation from unconstrained\mathbb{R}^d to a rectangle in\mathbb{R}^d, and its inverse transformation.
Usage
rect(z, a, b)inv_rect(x, a, b)Arguments
z | A point in the rectangle |
a | A vector |
b | A vector |
x | A point in |
Value
A vector of lengthd.
Examples
n = 20x = seq(-5, 5, length.out = n)# Transform x to the interval [-1, 1]a = rep(-1, n)b = rep(+1, n)z = inv_rect(x, a, b)print(z)xx = rect(z, a, b)stopifnot(all(abs(x - xx) < 1e-8))# Transform x to the interval [-Inf, 1]a = rep(-Inf, n)b = rep(+1, n)z = inv_rect(x, a, b)print(z)xx = rect(z, a, b)stopifnot(all(abs(x - xx) < 1e-8))# Transform x to the interval [-1, Inf]a = rep(-1, n)b = rep(+Inf, n)z = inv_rect(x, a, b)print(z)xx = rect(z, a, b)stopifnot(all(abs(x - xx) < 1e-8))# Transform x to the interval [-Inf, Inf]a = rep(-Inf, n)b = rep(+Inf, n)z = inv_rect(x, a, b)print(z)xx = rect(z, a, b)stopifnot(all(abs(x - xx) < 1e-8))Produce a sequence of knots
Description
Produce knots which defineN equally-spaced intervals between(finite) endpointslo andhi.
Usage
seq_knots(lo, hi, N, endpoints = FALSE)Arguments
lo | Left endpoint; must be finite. |
hi | Right endpoint; must be finite. |
N | Number of desired intervals. |
endpoints | logical; if |
Value
A vector that represents a sequence of knots. Ifendpoints = TRUE, itcontainsN+1 evenly-spaced knots that representN regions withendpoints included. Ifendpoints = FALSE, the endpoints are excluded.
Examples
seq_knots(0, 1, N = 5)seq_knots(0, 1, N = 5, endpoints = TRUE)# Trivial case: make endpoints for just one intervalseq_knots(0, 1, N = 1)seq_knots(0, 1, N = 1, endpoints = TRUE)# The following calls throw errorstryCatch({ seq_knots(0, 1, N = 0)}, error = function(e) { print(e) })tryCatch({ seq_knots(0, Inf, N = 5)}, error = function(e) { print(e) })tryCatch({ seq_knots(-Inf, 1, N = 5)}, error = function(e) { print(e) })