Movatterモバイル変換


[0]ホーム

URL:


Type:Package
Title:Structural Equation Modeling for the Social Relations Model
Version:0.4-26
Date:2022-11-03 10:20:31
Author:Steffen Nestler [aut], Alexander Robitzsch [aut, cre], Oliver Luedtke [aut]
Maintainer:Alexander Robitzsch <robitzsch@ipn.uni-kiel.de>
Description: Provides functionality for structural equation modeling for the social relations model (Kenny & La Voie, 1984; <doi:10.1016/S0065-2601(08)60144-6>; Warner, Kenny, & Soto, 1979, <doi:10.1037/0022-3514.37.10.1742>). Maximum likelihood estimation (Gill & Swartz, 2001, <doi:10.2307/3316080>; Nestler, 2018, <doi:10.3102/1076998617741106>) and least squares estimation is supported (Bond & Malloy, 2018, <doi:10.1016/B978-0-12-811967-9.00014-X>).
Depends:R (≥ 3.1)
Imports:Rcpp, stats, utils
Enhances:amen, TripleR
LinkingTo:Rcpp, RcppArmadillo
License:GPL-2 |GPL-3 [expanded from: GPL (≥ 2)]
URL:https://github.com/alexanderrobitzsch/srm,https://sites.google.com/site/alexanderrobitzsch2/software
NeedsCompilation:yes
Packaged:2022-11-03 09:21:57 UTC; sunpn563
Repository:CRAN
Date/Publication:2022-11-03 10:00:02 UTC

Structural Equation Modeling for the Social Relations Model

Description

Provides functionality for structural equation modeling for the social relations model (Kenny & La Voie, 1984; <doi:10.1016/S0065-2601(08)60144-6>; Warner, Kenny, & Soto, 1979, <doi:10.1037/0022-3514.37.10.1742>). Maximum likelihood estimation (Gill & Swartz, 2001, <doi:10.2307/3316080>; Nestler, 2018, <doi:10.3102/1076998617741106>) and least squares estimation is supported (Bond & Malloy, 2018, <doi:10.1016/B978-0-12-811967-9.00014-X>).

Author(s)

Steffen Nestler [aut], Alexander Robitzsch [aut, cre], Oliver Luedtke [aut]

Maintainer: Alexander Robitzsch <robitzsch@ipn.uni-kiel.de>

References

Bond, C. F., & Malloy, T. E. (2018a). Social relations analysis of dyadic data structure:The general case. In T. E. Malloy.Social relations modeling of behavior in dyads and groups (Ch. 14).Academic Press. doi:10.1016/B978-0-12-811967-9.00014-X

Gill, P. S., & Swartz, T. B. (2001). Statistical analyses for round robin interaction data.Canadian Journal of Statistics, 29(2), 321-331.doi:10.2307/3316080

Kenny, D. A., & La Voie, L. J. (1984). The social relations model. In L. Berkowitz (Ed.),Advances in experimental social psychology (Vol. 18, pp. 142-182). Orlando, FL: Academic. doi:10.1016/S0065-2601(08)60144-6

Nestler, S. (2018). Likelihood estimation of the multivariate social relations model.Journal of Educational and Behavioral Statistics, 43(4), 387-406.doi:10.3102/1076998617741106

Warner, R. M., Kenny, D. A., & Soto, M. (1979). A new round robin analysis of variance forsocial interaction data.Journal of Personality and Social Psychology, 37(10), 1742-1757. doi:10.1037/0022-3514.37.10.1742

See Also

See also theR packagesamen andTripleR for estimating thesocial relations model.


Hallmark and Kenny Round Robin Data

Description

Data from Kenny et al. (1994)

Usage

data(HallmarkKenny)

Format

A data frame with 802 measurements of 30 round-robin groups on the following 7round-robin variables (taken on unnumbered 7-point rating scales with higher numbersindicating a higher value of the trait):

calm: rating of dimension calm-anxious
sociable rating of dimension sociable-withdrawn
liking rating of dimension like-do not like
careful rating of dimension careful-careless
relaxed rating of dimension relaxed-tense
talkative rating of dimension talkative-quiet
responsible rating of dimension responsible-undependable

The data frame also contains participants gender (actor.sex;1 = F,2 = M) and their age in years (actor.age).Note that the data was assessed in two conditions: odd round robin group numbers indicategroups in which participants rated all traits for a person at a time whereas even numbersrefer to groups in which participants rated all the people for each trait.

Source

http://davidakenny.net/srm/srmdata.htm

References

Kenny, D. A., Albright, L., Malloy, T. E., & Kashy, D. A. (1994). Consensus ininterpersonal perception: Acquaintance and the big five.Psychological Bulletin, 116(2), 245-258.doi:10.1037/0033-2909.116.2.245


Zero Acquaintance Round Robin Data from Kenny

Description

Data from Albright et al. (1988) Study 2

Usage

data(Kenzer)

Format

A data frame with 124 measurements from 7 round-robin groups on the following 5 round-robinvariables (taken on unnumbered 7-point rating scales with higher numbers indicating ahigher value of the trait):

sociable: rating of dimension sociable
irritable: rating of dimension good-natured
responsible: rating of dimension responsible
anxious: rating of dimension calm
intellectual: rating of dimension intellectual

The data frame also contains the gender (actor.sex;1 = F,2 = M) of the participants and their self-ratings on the five assessed traits(actor.sociable and so on).

Source

http://davidakenny.net/srm/srmdata.htm

References

Albright, L., Kenny, D. A., & Malloy, T. E. (1988). Consensus in personality judgmentsat zero acquaintance.Journal of Personality and Social Psychology, 55(3),387-395. doi:10.1037/0022-3514.55.3.387


Zero Acquaintance Round Robin Data from Malloy

Description

Data from Albright et al. (1988) Study 1

Usage

data(Malzer)

Format

A data frame with 216 measurements from 12 round-robin groups on the following 5 round-robinvariables (assessed on numbered 7-point rating scales with higher numbers indicating ahigher value of the trait with the exception for good and calm):

sociable: rating of dimension sociable
irritable: rating of dimension good-natured
responsible: rating of dimension responsible
anxious: rating of dimension calm
intellectual: rating of dimension intellectual

The data frame also contains the gender (actor.sex;1 = F,2 = M) of the participants and their self-ratings on the five assessed traits(actor.sociable and so on).

Source

http://davidakenny.net/srm/srmdata.htm

References

Albright, L., Kenny, D. A., & Malloy, T. E. (1988). Consensus in personality judgmentsat zero acquaintance.Journal of Personality and Social Psychology, 55(3),387-395. doi:10.1037/0022-3514.55.3.387


Round Robin Data Reported in Warner et al.

Description

Data from Warner et al. (1979)

Usage

data(Warner)

Format

A data frame with 56 measurements of a single round-robin group on a single round-robinvariable that was measured at three consecutive time points. The variable reflects theproportion of time an actor spent when speaking to a partner.

prop.T1: proportion of time spent in the first interaction
prop.T2: proportion of time spent in the second interaction
prop.T3: proportion of time spent in the third interaction

Source

See Table 7 (p. 1752) of the Warner et al. (1979).

References

Warner, R. M., Kenny, D. A., & Soto, M. (1979). A new round robin analysis of variance forsocial interaction data.Journal of Personality and Social Psychology, 37(10),1742-1757. doi:10.1037/0022-3514.37.10.1742


Zero Acquaintance Round Robin Data From Albirght, Kenny, and Malloy

Description

Data from Study 3 of Albright et al. (1988)

Usage

data(Zero)

Format

A data frame with 636 measurements of 36 round robin groups on the following 15 round-robinvariables (taken on 7-point rating scales with higher values indicating more of thetrait):

sociable: rating of dimension sociable-reclusive
good: rating of dimension good-natured-irritable
responsible: rating of dimension responsible-undependable
calm: rating of dimension calm-anxious
intellectual: rating of dimension intellectual-unintellectual
imaginative: rating of dimension imaginative-unimaginative
talkative: rating of dimension talkative-silent
fussy: rating of dimension fussy-careless
composed: rating of dimension composed-excitable
cooperative: rating of dimension cooperative-negativistic
physically_attractive: rating of dimension physically attractive-unattractive
formal_dress: rating of dimension formal dress-casual dress
neatly_dressed: rating of dimension neatly dressed-sloppy dress
athletic: rating of dimension athletic-not athletic
young: rating of dimension young-old

The data frame also contains the gender (actor.sex;1 = F,2 = M) of the participants and their self-ratings on the five assessed traits(actor.sociable and so on).

Source

http://davidakenny.net/srm/srmdata.htm

References

Albright, L., Kenny, D. A., & Malloy, T. E. (1988). Consensus in personality judgmentsat zero acquaintance.Journal of Personality and Social Psychology, 55(3),387-395. doi:10.1037/0022-3514.55.3.387


Dataset Back et al. (2011)

Description

Dataset used in Back, Schmukle and Egloff (2011).

Usage

data(data.back)

Format

Source

https://osf.io/zd67x/

References

Back, M. D., Schmukle, S. C., & Egloff, B. (2011). A closer look at first sight: Socialrelations lens model analysis of personality and interpersonal attraction at zeroacquaintance.European Journal of Personality, 25(3), 225-238.doi:10.1002/per.790


Dataset Bond and Malloy (2018)

Description

This is the illustration dataset of Bond and Malloy (2018) for a bivariatesocial relations model. The round robin design contains 16 persons andsome missing values for one person.

Usage

data(data.bm1)data(data.bm2)

Format

Source

http://thomasemalloy.org/arbsrm-the-general-social-relations-model/

References

Bond, C. F., & Malloy, T. E. (2018a). Social relations analysis of dyadic data structure:The general case. In T. E. Malloy.Social relations modeling of behavior in dyads and groups (Ch. 14).Academic Press. doi:10.1016/B978-0-12-811967-9.00014-X


Example Datasets for thesrm Package

Description

Some simulated example datasets for thesrm package.

Usage

data(data.srm01)

Format


Structural Equation Model for the Social Relations Model

Description

Provides an estimation routine for a multiple group structural equation modelfor the social relations model (SRM; Kenny & La Voie, 1984; Warner, Kenny, & Soto, 1979).The model is estimated by maximum likelihood (Gill & Swartz, 2001;Nestler, 2018).

Usage

srm(model.syntax = NULL, data = NULL, group.var = NULL, rrgroup_name = NULL,  person_names = c("Actor", "Partner"), fixed.groups = FALSE, var_positive = -1,  optimizer = "srm", maxiter = 300, conv_dev = 1e-08, conv_par = 1e-06,  do_line_search = TRUE, line_search_iter_max = 6, verbose = TRUE, use_rcpp = TRUE,  shortcut = TRUE, use_woodbury = TRUE)## S3 method for class 'srm'coef(object, ...)## S3 method for class 'srm'vcov(object, ...)## S3 method for class 'srm'summary(object, digits=3, file=NULL, layout=1, ...)## S3 method for class 'srm'logLik(object, ...)

Arguments

model.syntax

Syntax similar tolavaan language, see Examples.

data

Data frame containing round robin identifier variables and variables in theround robin design

group.var

Name of grouping variable

rrgroup_name

Name of variable indicating round robin group

person_names

Names for identifier variables for actors and partners

fixed.groups

Logical indicating whether groups should be handled with fixed effects

var_positive

Nonnegative value if variances are constrained to be positive

optimizer

Optimizer to be used:"srm" for internal optimization usingFisher scoring and"nlminb" for L-FBGS optimization.

maxiter

Maximum number of iterations

conv_dev

Convergence criterion for change relative deviance

conv_par

Convergence criterion for change in parameters

do_line_search

Logical indicating whether line search should be performed

line_search_iter_max

Number of iterations during line search algorithm

verbose

Logical indicating whether convergence progress should be displayed

use_rcpp

Logical indicating whetherRcpp package should be used

shortcut

Logical indicating whether shortcuts for round robin groups withsame structure should be used

use_woodbury

Logical indicating whether matrix inversion shouldbe simplified by Woodbury identity

object

Object of classsrm

file

Optional file name for summary output

digits

Number of digits after decimal in summary output

layout

Different layouts (1 or2) for layout ofsummary

...

Further arguments to be passed

Value

List with following entries (selection)

parm.table

Parameter table with estimated values

coef

Vector of parameter estimates

vcov

Covariance matrix of parameter estimates

parm_list

List of model matrices

sigma

Model implied covariance matrices

...

Further values

References

Gill, P. S., & Swartz, T. B. (2001). Statistical analyses for round robin interactiondata.Canadian Journal of Statistics, 29(2), 321-331.doi:10.2307/3316080

Kenny, D. A., & La Voie, L. J. (1984). The social relations model. In L. Berkowitz (Ed.),Advances in experimental social psychology (Vol. 18, pp. 142-182).Orlando, FL: Academic. doi:10.1016/S0065-2601(08)60144-6

Nestler, S. (2018). Likelihood estimation of the multivariate social relations model.Journal of Educational and Behavioral Statistics, 43(4), 387-406.doi:10.3102/1076998617741106

Warner, R. M., Kenny, D. A., & Soto, M. (1979). A new round robin analysis of variance forsocial interaction data.Journal of Personality and Social Psychology, 37(10),1742-1757. doi:10.1037/0022-3514.37.10.1742

See Also

See alsoTripleR andamen packages for alternative estimationroutines for the SRM.

Examples

############################################################################## EXAMPLE 1: Univariate SRM#############################################################################data(data.srm01, package="srm")dat <- data.srm01#-- define modelmf <- '%PersonF1@A =~ 1*Wert1@AF1@P =~ 1*Wert1@PWert1@A ~~ 0*Wert1@A + 0*Wert1@PWert1@P ~~ 0*Wert1@P%DyadF1@AP =~ 1*Wert1@APF1@PA =~ 1*Wert1@PAWert1@AP ~~ 0*Wert1@AP + 0*Wert1@PAWert1@PA ~~ 0*Wert1@PA'#-- estimate modelmod1 <- srm::srm(mf, data = dat, rrgroup_name="Group", conv_par=1e-4, maxiter=20)summary(mod1)round(coef(mod1),3)############################################################################## EXAMPLE 2: Bivariate SRM#############################################################################data(data.srm01, package="srm")dat <- data.srm01#-- define modelmf <- '%PersonF1@A =~ 1*Wert1@AF1@P =~ 1*Wert1@PF2@A =~ 1*Wert2@AF2@P =~ 1*Wert2@PWert1@A ~~ 0*Wert1@A + 0*Wert1@PWert1@P ~~ 0*Wert1@PWert2@A ~~ 0*Wert2@A + 0*Wert2@PWert2@P ~~ 0*Wert2@P%DyadF1@AP =~ 1*Wert1@APF1@PA =~ 1*Wert1@PAF2@AP =~ 1*Wert2@APF2@PA =~ 1*Wert2@PAWert1@AP ~~ 0*Wert1@AP + 0*Wert1@PAWert1@PA ~~ 0*Wert1@PAWert2@AP ~~ 0*Wert2@AP + 0*Wert2@PAWert2@PA ~~ 0*Wert2@PA'#-- estimate modelmod1 <- srm::srm(mf, data = dat, rrgroup_name="Group", conv_par=1e-4, maxiter=20)summary(mod1)############################################################################## EXAMPLE 3: One-factor model#############################################################################data(data.srm01, package="srm")dat <- data.srm01#-- define modelmf <- '# definition of factor for persons and dyad%Personf1@A=~Wert1@A+Wert2@A+Wert3@Af1@P=~Wert1@P+Wert2@P+Wert3@P%Dyadf1@AP=~Wert1@AP+Wert2@AP+Wert3@AP# define some constraintsWert1@AP ~~ 0*Wert1@PAWert3@AP ~~ 0*Wert3@PA'#-- estimate modelmod1 <- srm::srm(mf, data = dat, rrgroup_name="Group", conv_par=1e-4)summary(mod1)coef(mod1)#- use stats::nlminb() optimizermod1 <- srm::srm(mf, data = dat, rrgroup_name="Group", optimizer="nlminb", conv_par=1e-4)summary(mod1)

Least Squares Estimation of the Social Relations Model (Bond & Malloy, 2018)

Description

Provides least squares estimation of the bivariate social relations modelwith missing completely at random data (Bond & Malloy, 2018a). The code isbasically taken from Bond and Malloy (2018b) and rewritten forreasons of computation time reduction.

Usage

srm_arbsrm(data, serror = TRUE, use_srm = TRUE)## S3 method for class 'srm_arbsrm'coef(object, ...)## S3 method for class 'srm_arbsrm'summary(object, digits=3, file=NULL, ...)

Arguments

data

Rectangular dataset currently containing only one round robin group.Bivariate observations are stacked one below the other (seeexample datasetdata.bm1).

serror

Logical indicating whether standard errors should be calculated.

use_srm

Logical indicating whether the rewritten code (TRUE) or theoriginal code of Bond and Malloy (2018b) should be used.

object

Object of classsrm_arbsrm

file

Optional file name for summary output

digits

Number of digits after decimal in summary output

...

Further arguments to be passed

Value

List containing entries

par_summary

Parameter summary table

est

Estimated parameters (as in Bond & Malloy, 2018b)

se

Estimated standard errors (as in Bond & Malloy, 2018b)

Note

If you use this function, please also cite Bond and Malloy (2018a).

Author(s)

Rewritten code of Bond and Malloy (2018b). Seehttp://thomasemalloy.org/arbsrm-the-general-social-relations-model/ andhttp://thomasemalloy.org/wp-content/uploads/2017/09/arbcodeR.pdf.

References

Bond, C. F., & Malloy, T. E. (2018a). Social relations analysis of dyadic data structure:The general case. In T. E. Malloy.Social relations modeling of behavior in dyads and groups (Ch. 14).Academic Press. doi:10.1016/B978-0-12-811967-9.00014-X

Bond, C. F., & Malloy, T. E. (2018b).ARBSRM - The general social relations model.http://thomasemalloy.org/arbsrm-the-general-social-relations-model/.

See Also

Without missing data, ANOVA estimation can be conducted with theTripleR package.

Examples

############################################################################## EXAMPLE 1: Bond and Malloy (2018) illustration dataset#############################################################################data(data.bm2, package="srm")dat <- data.bm2#- estimationmod1 <- srm::srm_arbsrm(dat)mod1$par_summarycoef(mod1)summary(mod1)#-- estimation with original Bond and Malloy codemod1a <- srm::srm_arbsrm(dat, use_srm=FALSE)summary(mod1a)

[8]ページ先頭

©2009-2025 Movatter.jp