Movatterモバイル変換


[0]ホーム

URL:


nftbart: Nonparametric Failure Time Bayesian Additive Regression Trees

Nonparametric Failure Time (NFT) Bayesian Additive Regression Trees (BART): Time-to-event Machine Learning with Heteroskedastic Bayesian Additive Regression Trees (HBART) and Low Information Omnibus (LIO) Dirichlet Process Mixtures (DPM). An NFT BART model is of the form Y = mu + f(x) + sd(x) E where functions f and sd have BART and HBART priors, respectively, while E is a nonparametric error distribution due to a DPM LIO prior hierarchy. See the following for a description of the model at <doi:10.1111/biom.13857>.

Version:2.3
Depends:R (≥ 4.2.0),survival,nnet,lattice
Imports:Rcpp
LinkingTo:Rcpp
Published:2025-12-03
DOI:10.32614/CRAN.package.nftbart
Author:Rodney Sparapani [aut, cre], Robert McCulloch [aut], Matthew Pratola [ctb], Hugh Chipman [ctb]
Maintainer:Rodney Sparapani <rsparapa at mcw.edu>
License:GPL-2 |GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation:yes
Materials:README,NEWS
CRAN checks:nftbart results

Documentation:

Reference manual:nftbart.html ,nftbart.pdf

Downloads:

Package source: nftbart_2.3.tar.gz
Windows binaries: r-devel:nftbart_2.3.zip, r-release:nftbart_2.3.zip, r-oldrel:nftbart_2.3.zip
macOS binaries: r-release (arm64):nftbart_2.3.tgz, r-oldrel (arm64):nftbart_2.3.tgz, r-release (x86_64):nftbart_2.3.tgz, r-oldrel (x86_64):nftbart_2.3.tgz
Old sources: nftbart archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=nftbartto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp