Movatterモバイル変換


[0]ホーム

URL:


PRIMAL: Parametric Simplex Method for Sparse Learning

Implements a unified framework of parametric simplex method for a variety of sparse learning problems (e.g., Dantzig selector (for linear regression), sparse quantile regression, sparse support vector machines, and compressive sensing) combined with efficient hyper-parameter selection strategies. The core algorithm is implemented in C++ with Eigen3 support for portable high performance linear algebra. For more details about parametric simplex method, see Haotian Pang (2017) <https://papers.nips.cc/paper/6623-parametric-simplex-method-for-sparse-learning.pdf>.

Version:1.0.3
Imports:Matrix
LinkingTo:Rcpp,RcppEigen
Published:2025-12-03
DOI:10.32614/CRAN.package.PRIMAL
Author:Zichong Li [aut, cre], Qianli Shen [aut]
Maintainer:Zichong Li <zichongli5 at gmail.com>
License:GPL-2 |GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation:yes
CRAN checks:PRIMAL results

Documentation:

Reference manual:PRIMAL.html ,PRIMAL.pdf
Vignettes:vignette (source)

Downloads:

Package source: PRIMAL_1.0.3.tar.gz
Windows binaries: r-devel:PRIMAL_1.0.3.zip, r-release:PRIMAL_1.0.3.zip, r-oldrel:PRIMAL_1.0.3.zip
macOS binaries: r-release (arm64):PRIMAL_1.0.3.tgz, r-oldrel (arm64):PRIMAL_1.0.3.tgz, r-release (x86_64):PRIMAL_1.0.3.tgz, r-oldrel (x86_64):PRIMAL_1.0.3.tgz
Old sources: PRIMAL archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=PRIMALto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp