Movatterモバイル変換


[0]ホーム

URL:


subsemble: An Ensemble Method for Combining Subset-Specific Algorithm Fits

The Subsemble algorithm is a general subset ensemble prediction method, which can be used for small, moderate, or large datasets. Subsemble partitions the full dataset into subsets of observations, fits a specified underlying algorithm on each subset, and uses a unique form of k-fold cross-validation to output a prediction function that combines the subset-specific fits. An oracle result provides a theoretical performance guarantee for Subsemble. The paper, "Subsemble: An ensemble method for combining subset-specific algorithm fits" is authored by Stephanie Sapp, Mark J. van der Laan & John Canny (2014) <doi:10.1080/02664763.2013.864263>.

Version:0.1.0
Depends:R (≥ 2.14.0),SuperLearner
Suggests:arm,caret,class,cvAUC,e1071,earth,gam,gbm,glmnet,Hmisc,ipred,lattice,LogicReg,MASS,mda,mlbench,nnet, parallel,party,polspline,quadprog,randomForest,rpart,SIS,spls,stepPlr
Published:2022-01-24
DOI:10.32614/CRAN.package.subsemble
Author:Erin LeDell [cre], Stephanie Sapp [aut], Mark van der Laan [aut]
Maintainer:Erin LeDell <oss at ledell.org>
BugReports:https://github.com/ledell/subsemble/issues
License:Apache License (== 2.0)
URL:https://github.com/ledell/subsemble
NeedsCompilation:no
Materials:NEWS
CRAN checks:subsemble results

Documentation:

Reference manual:subsemble.html ,subsemble.pdf

Downloads:

Package source: subsemble_0.1.0.tar.gz
Windows binaries: r-devel:subsemble_0.1.0.zip, r-release:subsemble_0.1.0.zip, r-oldrel:subsemble_0.1.0.zip
macOS binaries: r-release (arm64):subsemble_0.1.0.tgz, r-oldrel (arm64):subsemble_0.1.0.tgz, r-release (x86_64):subsemble_0.1.0.tgz, r-oldrel (x86_64):subsemble_0.1.0.tgz
Old sources: subsemble archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=subsembleto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp