tau<-numeric(K)for(kin1:K){ tau[k]<-runif(1,.2,.6)}R=matrix(0,K,K)# Initial alphasp_mastery<-c(.5,.5,.4,.4)Alphas_0<-matrix(0,N,K)for(iin1:N){for(kin1:K){ prereqs<-which(R[k,]==1)if(length(prereqs)==0){ Alphas_0[i,k]<-rbinom(1,1,p_mastery[k]) }if(length(prereqs)>0){ Alphas_0[i,k]<-prod(Alphas_0[i,prereqs])*rbinom(1,1,p_mastery) } }}Alphas<-sim_alphas(model="indept",taus=tau,N=N,L=L,R=R,alpha0=Alphas_0)table(rowSums(Alphas[,,5])-rowSums(Alphas[,,1]))# used to see how much transition has taken place#>#> 0 1 2 3 4#> 33 89 139 79 10Smats<-matrix(runif(J*K,.1,.3),c(J,K))Gmats<-matrix(runif(J*K,.1,.3),c(J,K))# Simulate rRUM parametersr_stars<- Gmats/ (1-Smats)pi_stars<-apply((1-Smats)^Q_matrix,1, prod)Y_sim<-sim_hmcdm(model="rRUM",Alphas,Q_matrix,Design_array,r_stars=r_stars,pi_stars=pi_stars)output_rRUM_indept=hmcdm(Y_sim,Q_matrix,"rRUM_indept",Design_array,100,30,R = R)#> 0output_rRUM_indept#>#> Model: rRUM_indept#>#> Sample Size: 350#> Number of Items:#> Number of Time Points:#>#> Chain Length: 100, burn-in: 50summary(output_rRUM_indept)#>#> Model: rRUM_indept#>#> Item Parameters:#> r_stars1_EAP r_stars2_EAP r_stars3_EAP r_stars4_EAP pi_stars_EAP#> 0.2781 0.6792 0.6201 0.6436 0.8204#> 0.5422 0.1011 0.6665 0.6236 0.8176#> 0.6219 0.6512 0.5843 0.2000 0.8191#> 0.6711 0.5022 0.1893 0.5535 0.7830#> 0.1142 0.2764 0.5600 0.6678 0.6988#> ... 45 more items#>#> Transition Parameters:#> taus_EAP#> τ1 0.6025#> τ2 0.2616#> τ3 0.3540#> τ4 0.4458#>#> Class Probabilities:#> pis_EAP#> 0000 0.07538#> 0001 0.10249#> 0010 0.04019#> 0011 0.05713#> 0100 0.13001#> ... 11 more classes#>#> Deviance Information Criterion (DIC): 22366.34#>#> Posterior Predictive P-value (PPP):#> M1: 0.494#> M2: 0.49#> total scores: 0.6145a<-summary(output_rRUM_indept)head(a$r_stars_EAP)#> [,1] [,2] [,3] [,4]#> [1,] 0.2781204 0.6791891 0.6201037 0.6435526#> [2,] 0.5421509 0.1010740 0.6664536 0.6235942#> [3,] 0.6218539 0.6512051 0.5842794 0.2000476#> [4,] 0.6710642 0.5021942 0.1893288 0.5534743#> [5,] 0.1141753 0.2763554 0.5600443 0.6678219#> [6,] 0.5029857 0.3006291 0.2997223 0.5265600(cor_pistars<-cor(as.vector(pi_stars),as.vector(a$pi_stars_EAP)))#> [1] 0.963348(cor_rstars<-cor(as.vector(r_stars*Q_matrix),as.vector(a$r_stars_EAP*Q_matrix)))#> [1] 0.9309798AAR_vec<-numeric(L)for(tin1:L){ AAR_vec[t]<-mean(Alphas[,,t]==a$Alphas_est[,,t])}AAR_vec#> [1] 0.8457143 0.9042857 0.9285714 0.9521429 0.9664286PAR_vec<-numeric(L)for(tin1:L){ PAR_vec[t]<-mean(rowSums((Alphas[,,t]-a$Alphas_est[,,t])^2)==0)}PAR_vec#> [1] 0.5200000 0.6857143 0.7600000 0.8400000 0.8828571a$DIC#> Transition Response_Time Response Joint Total#> D_bar 2103.685 NA 17736.25 1876.355 21716.29#> D(theta_bar) 2032.666 NA 17178.03 1855.554 21066.25#> DIC 2174.703 NA 18294.48 1897.156 22366.34head(a$PPP_total_scores)#> [,1] [,2] [,3] [,4] [,5]#> [1,] 1.00 0.84 0.02 0.14 0.16#> [2,] 0.46 0.74 0.74 0.40 1.00#> [3,] 0.40 0.48 0.96 0.84 0.78#> [4,] 0.90 0.90 0.60 0.90 0.98#> [5,] 0.58 0.34 0.86 0.46 0.68#> [6,] 0.90 0.58 0.78 0.38 0.78head(a$PPP_item_means)#> [1] 0.38 0.56 0.56 0.54 0.60 0.66head(a$PPP_item_ORs)#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]#> [1,] NA 0.62 0.72 0.26 0.52 0.70 0.84 0.58 0.14 0.62 0.66 0.84 0.68 0.10#> [2,] NA NA 0.66 0.76 0.98 0.56 0.76 0.08 0.38 0.82 0.18 0.76 0.20 0.78#> [3,] NA NA NA 1.00 0.48 0.98 0.50 0.92 0.64 0.86 0.88 0.76 0.70 0.78#> [4,] NA NA NA NA 0.26 0.46 0.56 0.62 0.50 0.26 0.38 0.84 0.22 0.02#> [5,] NA NA NA NA NA 0.40 0.94 0.32 0.00 0.98 0.16 0.68 0.20 0.14#> [6,] NA NA NA NA NA NA 0.52 0.92 0.50 0.62 0.84 0.74 0.66 0.38#> [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26]#> [1,] 0.22 0.54 0.14 0.32 0.32 0.28 0.52 0.16 0.86 0.64 0.80 0.20#> [2,] 0.70 0.98 0.92 0.70 0.60 0.56 0.42 0.26 0.28 0.94 0.46 0.44#> [3,] 0.92 0.98 0.32 0.76 0.82 0.94 0.28 0.50 0.70 0.94 0.28 0.82#> [4,] 0.38 0.30 0.26 0.18 0.60 0.88 0.98 0.66 0.30 0.62 0.72 0.50#> [5,] 0.10 0.18 0.40 0.52 0.12 0.16 0.74 0.38 0.46 0.80 0.54 0.38#> [6,] 0.10 0.10 0.92 0.34 0.54 0.82 0.92 0.70 0.32 0.64 0.60 0.46#> [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37]#> [1,] 0.00 0.14 0.02 0.14 0.54 0.20 0.62 0.36 0.46 0.2448980 0.72#> [2,] 0.62 0.26 0.22 0.78 0.10 0.62 0.90 0.12 0.40 0.9387755 0.28#> [3,] 0.66 0.08 0.76 0.70 0.62 1.00 0.68 0.32 0.84 1.0000000 0.80#> [4,] 0.88 0.12 0.98 0.24 0.86 0.44 0.24 0.00 0.62 0.5102041 1.00#> [5,] 0.54 0.78 0.62 0.60 0.34 0.82 0.36 0.02 0.36 0.5714286 0.80#> [6,] 0.22 0.82 0.28 0.68 0.56 0.80 0.36 0.26 0.78 0.4081633 0.82#> [,38] [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49]#> [1,] 0.48 0.78 0.50 0.94 0.42 0.70 0.72 0.72 0.34 0.28 0.46 0.02#> [2,] 0.80 0.08 0.46 0.50 0.74 0.10 0.14 0.16 0.64 0.74 0.94 0.52#> [3,] 0.90 0.56 0.88 0.42 0.96 0.28 0.76 0.36 0.86 0.34 0.10 0.50#> [4,] 0.48 0.68 0.98 0.86 0.32 0.74 0.60 0.98 0.82 0.56 0.36 0.62#> [5,] 0.44 0.44 0.96 0.34 0.42 0.36 0.16 0.58 0.56 0.14 0.84 0.86#> [6,] 0.74 0.54 0.86 0.64 0.10 0.44 0.68 0.98 0.12 0.36 0.78 0.96#> [,50]#> [1,] 0.84#> [2,] 0.18#> [3,] 0.46#> [4,] 0.24#> [5,] 0.54#> [6,] 0.38