class_0<-sample(1:2^K, N,replace = L)Alphas_0<-matrix(0,N,K)for(iin1:N){ Alphas_0[i,]<-inv_bijectionvector(K,(class_0[i]-1))}thetas_true=rnorm(N,0,1)tausd_true=0.5taus_true=rnorm(N,0,tausd_true)G_version=3phi_true=0.8lambdas_true<-c(-2,1.6, .4, .055)# empirical from Wang 2017Alphas<-sim_alphas(model="HO_sep",lambdas=lambdas_true,thetas=thetas_true,Q_matrix=Q_matrix,Design_array=Design_array)table(rowSums(Alphas[,,5])-rowSums(Alphas[,,1]))# used to see how much transition has taken place#>#> 0 1 2 3 4#> 66 52 80 121 31itempars_true<-matrix(runif(J*2,.1,.2),ncol=2)RT_itempars_true<-matrix(NA,nrow=J,ncol=2)RT_itempars_true[,2]<-rnorm(J,3.45,.5)RT_itempars_true[,1]<-runif(J,1.5,2)Y_sim<-sim_hmcdm(model="DINA",Alphas,Q_matrix,Design_array,itempars=itempars_true)L_sim<-sim_RT(Alphas,Q_matrix,Design_array,RT_itempars_true,taus_true,phi_true,G_version)output_HMDCM_RT_sep=hmcdm(Y_sim,Q_matrix,"DINA_HO_RT_sep",Design_array,100,30,Latency_array = L_sim,G_version = G_version,theta_propose =2,deltas_propose =c(.45,.35,.25,.06))#> 0output_HMDCM_RT_sep#>#> Model: DINA_HO_RT_sep#>#> Sample Size: 350#> Number of Items:#> Number of Time Points:#>#> Chain Length: 100, burn-in: 50summary(output_HMDCM_RT_sep)#>#> Model: DINA_HO_RT_sep#>#> Item Parameters:#> ss_EAP gs_EAP#> 0.16149 0.19939#> 0.09851 0.08643#> 0.21014 0.17458#> 0.18473 0.23380#> 0.11463 0.20836#> ... 45 more items#>#> Transition Parameters:#> lambdas_EAP#> λ0 -1.85612#> λ1 1.80213#> λ2 0.23449#> λ3 0.08619#>#> Class Probabilities:#> pis_EAP#> 0000 0.1441#> 0001 0.1981#> 0010 0.1769#> 0011 0.2421#> 0100 0.1737#> ... 11 more classes#>#> Deviance Information Criterion (DIC): 157110.6#>#> Posterior Predictive P-value (PPP):#> M1: 0.5172#> M2: 0.49#> total scores: 0.6265a<-summary(output_HMDCM_RT_sep)head(a$ss_EAP)#> [,1]#> [1,] 0.16149025#> [2,] 0.09850913#> [3,] 0.21013584#> [4,] 0.18473048#> [5,] 0.11463297#> [6,] 0.12763509(cor_thetas<-cor(thetas_true,a$thetas_EAP))#> [,1]#> [1,] 0.8073238(cor_taus<-cor(taus_true,a$response_times_coefficients$taus_EAP))#> [,1]#> [1,] 0.9869721(cor_ss<-cor(as.vector(itempars_true[,1]),a$ss_EAP))#> [,1]#> [1,] 0.5477734(cor_gs<-cor(as.vector(itempars_true[,2]),a$gs_EAP))#> [,1]#> [1,] 0.7695372AAR_vec<-numeric(L)for(tin1:L){ AAR_vec[t]<-mean(Alphas[,,t]==a$Alphas_est[,,t])}AAR_vec#> [1] 0.9221429 0.9435714 0.9592857 0.9685714 0.9614286PAR_vec<-numeric(L)for(tin1:L){ PAR_vec[t]<-mean(rowSums((Alphas[,,t]-a$Alphas_est[,,t])^2)==0)}PAR_vec#> [1] 0.7485714 0.8085714 0.8514286 0.8857143 0.8628571a$DIC#> Transition Response_Time Response Joint Total#> D_bar 2205.921 135843.4 15042.20 3067.784 156159.4#> D(theta_bar) 1905.363 135402.1 14870.05 3030.558 155208.1#> DIC 2506.479 136284.8 15214.35 3105.011 157110.6head(a$PPP_total_scores)#> [,1] [,2] [,3] [,4] [,5]#> [1,] 0.82 0.16 0.08 0.94 1.00#> [2,] 0.54 0.78 0.10 0.96 0.78#> [3,] 0.76 0.42 0.38 0.58 0.86#> [4,] 0.48 0.76 0.08 1.00 1.00#> [5,] 0.66 0.74 0.68 0.78 0.96#> [6,] 0.50 0.70 0.80 0.98 0.12head(a$PPP_item_means)#> [1] 0.50 0.38 0.56 0.46 0.42 0.32head(a$PPP_item_ORs)#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]#> [1,] NA 0.22 0.96 0.94 0.48 0.26 0.36 0.38 0.82 0.36 0.14 0.18 0.68 0.20#> [2,] NA NA 0.60 0.82 0.24 0.64 0.18 0.72 0.82 0.44 0.44 0.68 1.00 0.58#> [3,] NA NA NA 0.64 0.82 0.92 0.72 0.94 0.78 0.22 0.70 0.02 0.64 0.86#> [4,] NA NA NA NA 1.00 0.46 0.66 0.90 0.78 0.92 0.66 0.60 0.84 0.68#> [5,] NA NA NA NA NA 0.12 0.40 0.62 0.84 0.68 0.96 0.28 1.00 0.12#> [6,] NA NA NA NA NA NA 0.50 0.86 0.74 0.60 0.58 0.32 0.86 0.80#> [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26]#> [1,] 0.08 0.06 0.16 0.42 0.16 0.72 0.10 0.64 0.42 0.48 0.68 0.30#> [2,] 0.80 0.54 0.46 0.54 0.72 0.84 0.62 0.76 0.82 0.54 0.44 0.24#> [3,] 0.50 0.16 0.16 0.56 0.46 0.90 0.22 0.94 0.48 0.70 0.56 0.42#> [4,] 0.78 0.64 0.22 0.32 0.52 0.56 0.92 0.82 0.78 0.62 0.96 0.00#> [5,] 0.40 0.24 0.16 0.36 0.76 0.78 0.72 0.40 0.08 0.98 0.90 0.62#> [6,] 0.22 0.62 0.02 0.86 0.78 0.78 0.76 0.60 0.94 0.16 0.94 0.84#> [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37] [,38]#> [1,] 1.00 0.04 0.02 0.34 0.12 0.00 0.40 0.50 0.12 0.20 0.16 0.18#> [2,] 0.36 0.54 0.68 0.16 0.96 0.42 0.70 0.34 0.44 0.04 0.48 0.68#> [3,] 0.74 0.48 0.54 0.68 0.38 0.48 0.50 0.80 0.98 0.58 0.98 0.40#> [4,] 0.58 0.18 0.82 0.76 0.48 0.56 0.38 0.24 0.10 0.54 0.96 0.58#> [5,] 0.56 0.48 0.14 0.76 0.98 0.78 0.56 0.46 0.82 0.86 0.66 0.96#> [6,] 0.64 0.92 0.66 0.64 0.42 0.16 0.54 0.62 0.14 0.04 0.68 0.64#> [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49] [,50]#> [1,] 0.48 0.10 0.26 1.00 0.72 0.10 0.26 0.24 0.54 0.44 0.84 0.12#> [2,] 0.72 0.50 0.76 0.62 0.12 0.80 0.76 0.86 0.24 0.92 0.50 0.54#> [3,] 0.76 0.28 0.78 0.86 0.96 0.20 0.68 0.96 0.12 0.38 0.80 0.84#> [4,] 0.22 0.70 0.60 0.66 0.78 0.96 0.68 0.54 0.56 0.22 0.66 0.48#> [5,] 0.26 0.62 0.98 0.90 0.44 0.66 0.68 0.42 0.36 0.62 0.80 0.48#> [6,] 0.64 0.22 0.82 0.56 0.26 0.36 0.90 0.70 0.32 0.04 0.64 0.68library(bayesplot)#> This is bayesplot version 1.14.0#> - Online documentation and vignettes at mc-stan.org/bayesplot#> - bayesplot theme set to bayesplot::theme_default()#> * Does _not_ affect other ggplot2 plots#> * See ?bayesplot_theme_set for details on theme settingpp_check(output_HMDCM_RT_sep,type="total_latency")