ETAs<-ETAmat(K, J, Q_matrix)class_0<-sample(1:2^K, N,replace = L)Alphas_0<-matrix(0,N,K)mu_thetatau=c(0,0)Sig_thetatau=rbind(c(1.8^2,.4*.5*1.8),c(.4*.5*1.8,.25))Z=matrix(rnorm(N*2),N,2)thetatau_true= Z%*%chol(Sig_thetatau)thetas_true= thetatau_true[,1]taus_true= thetatau_true[,2]G_version=3phi_true=0.8for(iin1:N){ Alphas_0[i,]<-inv_bijectionvector(K,(class_0[i]-1))}lambdas_true<-c(-2, .4, .055)# empirical from Wang 2017Alphas<-sim_alphas(model="HO_joint",lambdas=lambdas_true,thetas=thetas_true,Q_matrix=Q_matrix,Design_array=Design_array)table(rowSums(Alphas[,,5])-rowSums(Alphas[,,1]))# used to see how much transition has taken place#>#> 0 1 2 3 4#> 64 58 84 107 37itempars_true<-matrix(runif(J*2,.1,.2),ncol=2)RT_itempars_true<-matrix(NA,nrow=J,ncol=2)RT_itempars_true[,2]<-rnorm(J,3.45,.5)RT_itempars_true[,1]<-runif(J,1.5,2)Y_sim<-sim_hmcdm(model="DINA",Alphas,Q_matrix,Design_array,itempars=itempars_true)L_sim<-sim_RT(Alphas,Q_matrix,Design_array, RT_itempars_true,taus_true,phi_true,G_version)output_HMDCM_RT_joint=hmcdm(Y_sim,Q_matrix,"DINA_HO_RT_joint",Design_array,100,30,Latency_array = L_sim,G_version = G_version,theta_propose =2,deltas_propose =c(.45,.25,.06))#> 0output_HMDCM_RT_joint#>#> Model: DINA_HO_RT_joint#>#> Sample Size: 350#> Number of Items:#> Number of Time Points:#>#> Chain Length: 100, burn-in: 50summary(output_HMDCM_RT_joint)#>#> Model: DINA_HO_RT_joint#>#> Item Parameters:#> ss_EAP gs_EAP#> 0.1727 0.08984#> 0.1816 0.17441#> 0.1579 0.11196#> 0.1180 0.16100#> 0.1086 0.12128#> ... 45 more items#>#> Transition Parameters:#> lambdas_EAP#> λ0 -1.9333#> λ1 0.1473#> λ2 0.1668#>#> Class Probabilities:#> pis_EAP#> 0000 0.1683#> 0001 0.1329#> 0010 0.1479#> 0011 0.2828#> 0100 0.1229#> ... 11 more classes#>#> Deviance Information Criterion (DIC): 158101#>#> Posterior Predictive P-value (PPP):#> M1: 0.5#> M2: 0.49#> total scores: 0.6265a<-summary(output_HMDCM_RT_joint)a#>#> Model: DINA_HO_RT_joint#>#> Item Parameters:#> ss_EAP gs_EAP#> 0.1727 0.08984#> 0.1816 0.17441#> 0.1579 0.11196#> 0.1180 0.16100#> 0.1086 0.12128#> ... 45 more items#>#> Transition Parameters:#> lambdas_EAP#> λ0 -1.9333#> λ1 0.1473#> λ2 0.1668#>#> Class Probabilities:#> pis_EAP#> 0000 0.1683#> 0001 0.1329#> 0010 0.1479#> 0011 0.2828#> 0100 0.1229#> ... 11 more classes#>#> Deviance Information Criterion (DIC): 158101#>#> Posterior Predictive P-value (PPP):#> M1: 0.5008#> M2: 0.49#> total scores: 0.6284a$ss_EAP#> [,1]#> [1,] 0.17269201#> [2,] 0.18155850#> [3,] 0.15793767#> [4,] 0.11800202#> [5,] 0.10859240#> [6,] 0.18435075#> [7,] 0.13729573#> [8,] 0.09056036#> [9,] 0.14026537#> [10,] 0.10935337#> [11,] 0.10923594#> [12,] 0.18604417#> [13,] 0.17070529#> [14,] 0.09539927#> [15,] 0.10884538#> [16,] 0.15417946#> [17,] 0.18275347#> [18,] 0.17545294#> [19,] 0.24954013#> [20,] 0.13180079#> [21,] 0.12408538#> [22,] 0.20856378#> [23,] 0.13759198#> [24,] 0.22857160#> [25,] 0.18071116#> [26,] 0.23041432#> [27,] 0.16984212#> [28,] 0.20469014#> [29,] 0.17311793#> [30,] 0.17487781#> [31,] 0.14947353#> [32,] 0.12124006#> [33,] 0.24027107#> [34,] 0.13190875#> [35,] 0.17088618#> [36,] 0.10801057#> [37,] 0.25565457#> [38,] 0.12657494#> [39,] 0.19016467#> [40,] 0.14297617#> [41,] 0.12272135#> [42,] 0.15629315#> [43,] 0.22920419#> [44,] 0.24783945#> [45,] 0.21246526#> [46,] 0.14814914#> [47,] 0.28445936#> [48,] 0.22325116#> [49,] 0.15027183#> [50,] 0.16661440head(a$ss_EAP)#> [,1]#> [1,] 0.1726920#> [2,] 0.1815585#> [3,] 0.1579377#> [4,] 0.1180020#> [5,] 0.1085924#> [6,] 0.1843508(cor_thetas<-cor(thetas_true,a$thetas_EAP))#> [,1]#> [1,] 0.7914858(cor_taus<-cor(taus_true,a$response_times_coefficients$taus_EAP))#> [,1]#> [1,] 0.9869964(cor_ss<-cor(as.vector(itempars_true[,1]),a$ss_EAP))#> [,1]#> [1,] 0.7527781(cor_gs<-cor(as.vector(itempars_true[,2]),a$gs_EAP))#> [,1]#> [1,] 0.7282395AAR_vec<-numeric(L)for(tin1:L){ AAR_vec[t]<-mean(Alphas[,,t]==a$Alphas_est[,,t])}AAR_vec#> [1] 0.9271429 0.9321429 0.9571429 0.9635714 0.9628571PAR_vec<-numeric(L)for(tin1:L){ PAR_vec[t]<-mean(rowSums((Alphas[,,t]-a$Alphas_est[,,t])^2)==0)}PAR_vec#> [1] 0.7257143 0.7600000 0.8342857 0.8657143 0.8685714a$DIC#> Transition Response_Time Response Joint Total#> D_bar 1959.319 137004.6 14607.29 3549.689 157120.9#> D(theta_bar) 1704.693 136565.8 14429.81 3440.395 156140.7#> DIC 2213.944 137443.3 14784.77 3658.983 158101.0head(a$PPP_total_scores)#> [,1] [,2] [,3] [,4] [,5]#> [1,] 0.96 0.66 0.80 0.12 0.22#> [2,] 0.20 0.38 0.08 0.84 0.92#> [3,] 0.82 0.88 0.32 0.64 0.86#> [4,] 0.76 0.04 0.96 0.40 0.74#> [5,] 1.00 0.70 0.32 0.78 0.34#> [6,] 0.34 0.40 0.78 0.78 0.70head(a$PPP_total_RTs)#> [,1] [,2] [,3] [,4] [,5]#> [1,] 0.32 0.56 0.86 0.12 0.20#> [2,] 0.56 0.84 0.18 0.90 0.02#> [3,] 0.24 0.46 0.64 0.46 0.78#> [4,] 0.42 0.64 0.52 0.78 0.28#> [5,] 0.80 0.26 0.56 0.52 0.66#> [6,] 0.82 0.00 0.08 0.88 0.32head(a$PPP_item_means)#> [1] 0.56 0.60 0.48 0.44 0.48 0.44head(a$PPP_item_mean_RTs)#> [1] 0.22 0.52 0.48 0.68 0.14 0.36head(a$PPP_item_ORs)#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]#> [1,] NA 0.94 0.92 0.18 0.94 0.38 0.82 0.70 0.64 0.98 0.48 0.84 0.34 0.36#> [2,] NA NA 0.82 0.60 0.82 0.92 0.90 0.68 0.54 0.78 0.40 0.28 0.42 0.96#> [3,] NA NA NA 0.66 0.62 0.42 0.60 0.72 0.78 0.24 0.80 0.82 0.80 0.98#> [4,] NA NA NA NA 0.48 0.06 0.16 0.16 0.76 0.16 0.66 0.28 0.90 0.82#> [5,] NA NA NA NA NA 0.30 0.54 0.62 0.46 0.34 0.84 0.36 0.88 0.52#> [6,] NA NA NA NA NA NA 0.88 0.62 0.58 0.50 0.10 0.78 0.20 0.70#> [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26]#> [1,] 0.72 0.34 0.90 0.02 0.42 0.04 0.86 0.92 0.70 0.94 0.32 0.48#> [2,] 0.92 0.90 0.42 0.90 1.00 0.96 0.88 0.92 0.54 0.88 0.62 0.52#> [3,] 0.84 0.08 0.66 0.56 0.98 0.38 0.12 0.18 0.58 0.46 0.34 0.38#> [4,] 0.02 0.18 0.32 0.30 0.40 0.28 0.46 0.50 0.20 0.34 0.44 0.34#> [5,] 0.76 0.50 0.92 0.90 0.84 0.60 0.50 0.98 0.44 0.96 0.46 0.98#> [6,] 0.30 0.54 0.90 0.72 0.84 0.62 0.10 0.78 0.12 0.76 0.02 0.50#> [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37] [,38]#> [1,] 0.10 0.34 0.58 0.76 0.12 0.66 0.80 0.72 0.94 0.78 0.46 0.94#> [2,] 0.14 0.78 0.64 0.90 0.46 0.88 0.94 0.92 0.80 0.74 0.90 0.82#> [3,] 0.84 0.46 0.08 0.68 0.06 0.24 0.36 0.62 0.14 0.60 0.38 0.14#> [4,] 0.46 0.36 0.48 0.36 0.74 0.34 0.56 0.92 0.58 0.30 0.24 0.26#> [5,] 0.28 0.24 0.32 0.82 0.40 0.64 0.72 0.72 0.66 0.78 0.62 0.32#> [6,] 0.02 0.16 0.32 0.48 0.42 0.84 0.66 0.40 0.40 0.54 0.08 0.32#> [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49] [,50]#> [1,] 0.80 0.28 0.50 0.70 0.48 0.80 0.82 0.90 0.84 0.80 0.88 0.52#> [2,] 0.70 0.76 0.86 0.42 0.30 0.94 0.62 0.76 0.98 0.90 0.78 0.76#> [3,] 0.50 0.20 0.88 0.56 0.82 0.06 0.78 0.70 0.28 0.68 0.38 0.06#> [4,] 0.88 0.18 0.36 0.92 0.42 0.94 0.98 0.42 0.80 0.06 0.56 0.12#> [5,] 0.88 0.26 0.56 0.80 0.24 0.18 0.74 0.26 0.44 0.84 0.64 0.44#> [6,] 0.18 0.22 0.76 0.12 0.22 0.46 0.52 0.78 0.24 0.34 0.52 0.44