Movatterモバイル変換


[0]ホーム

URL:


L0Learn: Fast Algorithms for Best Subset Selection

Highly optimized toolkit for approximately solving L0-regularized learning problems (a.k.a. best subset selection). The algorithms are based on coordinate descent and local combinatorial search. For more details, check the paper by Hazimeh and Mazumder (2020) <doi:10.1287/opre.2019.1919>.

Version:2.1.0
Depends:R (≥ 3.3.0)
Imports:Rcpp (≥ 0.12.13),Matrix, methods,ggplot2,reshape2,MASS
LinkingTo:Rcpp,RcppArmadillo
Suggests:knitr,rmarkdown,testthat,pracma,raster,covr
Published:2023-03-07
DOI:10.32614/CRAN.package.L0Learn
Author:Hussein Hazimeh [aut, cre], Rahul Mazumder [aut], Tim Nonet [aut]
Maintainer:Hussein Hazimeh <husseinhaz at gmail.com>
BugReports:https://github.com/hazimehh/L0Learn/issues
License:MIT + fileLICENSE
URL:https://github.com/hazimehh/L0Learnhttps://pubsonline.informs.org/doi/10.1287/opre.2019.1919
NeedsCompilation:yes
Materials:ChangeLog
CRAN checks:L0Learn results

Documentation:

Reference manual:L0Learn.html ,L0Learn.pdf
Vignettes:L0Learn Vignette (source,R code)

Downloads:

Package source: L0Learn_2.1.0.tar.gz
Windows binaries: r-devel:L0Learn_2.1.0.zip, r-release:L0Learn_2.1.0.zip, r-oldrel:L0Learn_2.1.0.zip
macOS binaries: r-release (arm64):L0Learn_2.1.0.tgz, r-oldrel (arm64):L0Learn_2.1.0.tgz, r-release (x86_64):L0Learn_2.1.0.tgz, r-oldrel (x86_64):L0Learn_2.1.0.tgz
Old sources: L0Learn archive

Reverse dependencies:

Reverse imports:inferCSN,modelSelection

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=L0Learnto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp