Movatterモバイル変換


[0]ホーム

URL:


dfms: Dynamic Factor Models

Efficient estimation of Dynamic Factor Models using the Expectation Maximization (EM) algorithm or Two-Step (2S) estimation, supporting datasets with missing data. Factors are assumed to follow a stationary VAR process of order p. The estimation options follow advances in the econometric literature: either running the Kalman Filter and Smoother once with initial values from PCA - 2S estimation as in Doz, Giannone and Reichlin (2011) <doi:10.1016/j.jeconom.2011.02.012> - or via iterated Kalman Filtering and Smoothing until EM convergence - following Doz, Giannone and Reichlin (2012) <doi:10.1162/REST_a_00225> - or using the adapted EM algorithm of Banbura and Modugno (2014) <doi:10.1002/jae.2306>, allowing arbitrary patterns of missing data. The implementation makes heavy use of the 'Armadillo' 'C++' library and the 'collapse' package, providing for particularly speedy estimation. A comprehensive set of methods supports interpretation and visualization of the model as well as forecasting. Information criteria to choose the number of factors are also provided - following Bai and Ng (2002) <doi:10.1111/1468-0262.00273>.

Version:0.3.2
Depends:R (≥ 3.5.0)
Imports:Rcpp (≥ 1.0.1),collapse (≥ 2.0.0)
LinkingTo:Rcpp,RcppArmadillo
Suggests:xts,vars,magrittr,testthat (≥ 3.0.0),knitr,rmarkdown,covr
Published:2025-09-24
DOI:10.32614/CRAN.package.dfms
Author:Sebastian Krantz [aut, cre], Rytis Bagdziunas [aut], Santtu Tikka [rev], Eli Holmes [rev]
Maintainer:Sebastian Krantz <sebastian.krantz at graduateinstitute.ch>
BugReports:https://github.com/SebKrantz/dfms/issues
License:GPL-3
URL:https://sebkrantz.github.io/dfms/,https://github.com/SebKrantz/dfms
NeedsCompilation:yes
Materials:README,NEWS
In views:TimeSeries
CRAN checks:dfms results

Documentation:

Reference manual:dfms.html ,dfms.pdf
Vignettes:Introduction to dfms (source,R code)
Dynamic Factor Models: A Very Short Introduction (source)

Downloads:

Package source: dfms_0.3.2.tar.gz
Windows binaries: r-devel:dfms_0.3.2.zip, r-release:dfms_0.3.2.zip, r-oldrel:dfms_0.3.2.zip
macOS binaries: r-release (arm64):dfms_0.3.2.tgz, r-oldrel (arm64):dfms_0.3.2.tgz, r-release (x86_64):dfms_0.3.2.tgz, r-oldrel (x86_64):dfms_0.3.2.tgz
Old sources: dfms archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=dfmsto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp