Movatterモバイル変換


[0]ホーム

URL:


Riemann: Learning with Data on Riemannian Manifolds

We provide a variety of algorithms for manifold-valued data, including Fréchet summaries, hypothesis testing, clustering, visualization, and other learning tasks. See Bhattacharya and Bhattacharya (2012) <doi:10.1017/CBO9781139094764> for general exposition to statistics on manifolds.

Version:0.1.6
Depends:R (≥ 2.10)
Imports:CVXR,Rcpp (≥ 1.0.5),Rdpack,RiemBase,Rdimtools,T4cluster,DEoptim,lpSolve,Matrix,maotai (≥ 0.2.2), stats, utils
LinkingTo:Rcpp,RcppArmadillo
Suggests:testthat (≥ 3.0.0)
Published:2025-09-26
DOI:10.32614/CRAN.package.Riemann
Author:Kisung YouORCID iD [aut, cre]
Maintainer:Kisung You <kisung.you at outlook.com>
BugReports:https://github.com/kisungyou/Riemann/issues
License:MIT + fileLICENSE
URL:https://www.kisungyou.com/Riemann/
NeedsCompilation:yes
Materials:README,NEWS
CRAN checks:Riemann results

Documentation:

Reference manual:Riemann.html ,Riemann.pdf

Downloads:

Package source: Riemann_0.1.6.tar.gz
Windows binaries: r-devel:Riemann_0.1.6.zip, r-release:Riemann_0.1.6.zip, r-oldrel:Riemann_0.1.6.zip
macOS binaries: r-release (arm64):Riemann_0.1.6.tgz, r-oldrel (arm64):Riemann_0.1.6.tgz, r-release (x86_64):Riemann_0.1.6.tgz, r-oldrel (x86_64):Riemann_0.1.6.tgz
Old sources: Riemann archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=Riemannto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp