Movatterモバイル変換


[0]ホーム

URL:


baygel: Bayesian Shrinkage Estimators for Precision Matrices in GaussianGraphical Models

This R package offers block Gibbs samplers for the Bayesian (adaptive) graphical lasso, ridge, and naive elastic net priors. These samplers facilitate the simulation of the posterior distribution of precision matrices for Gaussian distributed data and were originally proposed by: Wang (2012) <doi:10.1214/12-BA729>; Smith et al. (2022) <doi:10.48550/arXiv.2210.16290> and Smith et al. (2023) <doi:10.48550/arXiv.2306.14199>, respectively.

Version:0.3.0
Imports:Rcpp (≥ 1.0.8),RcppArmadillo (≥ 0.11.1.1.0)
LinkingTo:Rcpp,RcppArmadillo,RcppProgress
Suggests:MASS,pracma
Published:2023-11-11
DOI:10.32614/CRAN.package.baygel
Author:Jarod SmithORCID iD [aut, cre], Mohammad ArashiORCID iD [aut], Andriette BekkerORCID iD [aut]
Maintainer:Jarod Smith <jarodsmith706 at gmail.com>
License:GPL (≥ 3)
URL:https://github.com/Jarod-Smithy/baygel
NeedsCompilation:yes
CRAN checks:baygel results

Documentation:

Reference manual:baygel.html ,baygel.pdf

Downloads:

Package source: baygel_0.3.0.tar.gz
Windows binaries: r-devel:baygel_0.3.0.zip, r-release:baygel_0.3.0.zip, r-oldrel:baygel_0.3.0.zip
macOS binaries: r-release (arm64):baygel_0.3.0.tgz, r-oldrel (arm64):baygel_0.3.0.tgz, r-release (x86_64):baygel_0.3.0.tgz, r-oldrel (x86_64):baygel_0.3.0.tgz
Old sources: baygel archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=baygelto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp