Movatterモバイル変換


[0]ホーム

URL:


Forecasting

library(bvhar)

Simulation

Given VAR coefficient and VHAR coefficient each,

We use coefficient matrix estimated by VAR(5) in introductionvignette.

Consider

coef(ex_fit)#>              GVZCLS   OVXCLS    EVZCLS VXFXICLS#> GVZCLS_1    0.93302 -0.02332 -0.007712 -0.03853#> OVXCLS_1    0.05429  1.00399  0.009806  0.01062#> EVZCLS_1    0.06794 -0.13900  0.983825  0.07783#> VXFXICLS_1 -0.03399  0.03404  0.020719  0.93350#> GVZCLS_2   -0.07831  0.08753  0.019302  0.08939#> OVXCLS_2   -0.04770  0.01480  0.003888  0.04392#> EVZCLS_2    0.08082  0.26704 -0.110017 -0.07163#> VXFXICLS_2  0.05465 -0.12154 -0.040349  0.04012#> GVZCLS_3    0.04332 -0.02459 -0.011041 -0.02556#> OVXCLS_3   -0.00594 -0.09550  0.006638 -0.04981#> EVZCLS_3   -0.02952 -0.04926  0.091056  0.01204#> VXFXICLS_3 -0.05876 -0.05995  0.003803 -0.02027#> GVZCLS_4   -0.00845 -0.04490  0.005415 -0.00817#> OVXCLS_4    0.01070 -0.00383 -0.022806 -0.05557#> EVZCLS_4   -0.01971 -0.02008 -0.016535  0.08229#> VXFXICLS_4  0.06139  0.14403  0.019780 -0.10271#> GVZCLS_5    0.07301  0.01093 -0.010994 -0.01526#> OVXCLS_5   -0.01658  0.07401  0.007035  0.04297#> EVZCLS_5   -0.08794 -0.06189  0.021082 -0.02465#> VXFXICLS_5 -0.01739  0.00169  0.000335  0.09384#> const       0.57370  0.15256  0.132842  0.87785ex_fit$covmat#>          GVZCLS OVXCLS EVZCLS VXFXICLS#> GVZCLS    1.157  0.403  0.127    0.332#> OVXCLS    0.403  1.740  0.115    0.438#> EVZCLS    0.127  0.115  0.144    0.127#> VXFXICLS  0.332  0.438  0.127    1.028

Then

m<-ncol(ex_fit$coefficients)# generate VAR(5)-----------------y<-sim_var(num_sim =1500,num_burn =100,var_coef =coef(ex_fit),var_lag =5L,sig_error = ex_fit$covmat,init =matrix(0L,nrow =5L,ncol = m))# colname: y1, y2, ...------------colnames(y)<-paste0("y",1:m)head(y)#>        y1   y2   y3   y4#> [1,] 18.7 26.5 7.55 26.2#> [2,] 18.2 25.8 7.39 25.6#> [3,] 19.7 25.3 7.40 26.1#> [4,] 20.6 24.5 7.34 26.4#> [5,] 21.6 24.6 7.06 27.8#> [6,] 22.5 23.7 7.02 25.8
h<-20y_eval<-divide_ts(y, h)y_train<- y_eval$train# trainy_test<- y_eval$test# test

Fitting Models

VAR(5) and VHAR

# VAR(5)model_var<-var_lm(y_train,5)# VHARmodel_vhar<-vhar_lm(y_train)

BVAR(5)

Minnesota prior

# hyper parameters---------------------------y_sig<-apply(y_train,2, sd)# sigma vectory_lam<- .2# lambday_delta<-rep(.2, m)# delta vector (0 vector since RV stationary)eps<-1e-04# very small numberspec_bvar<-set_bvar(y_sig, y_lam, y_delta, eps)# fit---------------------------------------model_bvar<-bvar_minnesota(y_train,p =5,bayes_spec = spec_bvar)

BVHAR

BVHAR-S

spec_bvhar_v1<-set_bvhar(y_sig, y_lam, y_delta, eps)# fit---------------------------------------model_bvhar_v1<-bvhar_minnesota(y_train,bayes_spec = spec_bvhar_v1)

BVHAR-L

# weights----------------------------------y_day<-rep(.1, m)y_week<-rep(.01, m)y_month<-rep(.01, m)# spec-------------------------------------spec_bvhar_v2<-set_weight_bvhar(  y_sig,  y_lam,  eps,  y_day,  y_week,  y_month)# fit--------------------------------------model_bvhar_v2<-bvhar_minnesota(y_train,bayes_spec = spec_bvhar_v2)

Splitting

You can forecast usingpredict() method with aboveobjects. You should set the step of the forecasting usingn_ahead argument.

In addition, the result of this forecast will return another classcalledpredbvhar to use some methods,

VAR

(pred_var<-predict(model_var,n_ahead = h))#>         y1   y2   y3   y4#>  [1,] 17.0 37.3 9.56 22.2#>  [2,] 16.8 37.4 9.56 22.4#>  [3,] 16.7 37.3 9.58 22.5#>  [4,] 16.7 37.2 9.57 22.6#>  [5,] 16.7 37.1 9.58 22.7#>  [6,] 16.6 37.0 9.58 22.7#>  [7,] 16.6 36.9 9.58 22.8#>  [8,] 16.5 36.8 9.59 22.9#>  [9,] 16.5 36.8 9.59 22.9#> [10,] 16.4 36.7 9.59 23.0#> [11,] 16.4 36.6 9.60 23.1#> [12,] 16.3 36.5 9.60 23.1#> [13,] 16.3 36.4 9.60 23.2#> [14,] 16.3 36.3 9.60 23.3#> [15,] 16.2 36.3 9.61 23.3#> [16,] 16.2 36.2 9.61 23.4#> [17,] 16.2 36.1 9.61 23.4#> [18,] 16.1 36.0 9.61 23.5#> [19,] 16.1 35.9 9.61 23.5#> [20,] 16.1 35.9 9.61 23.6
class(pred_var)#> [1] "predbvhar"names(pred_var)#> [1] "process"     "forecast"    "se"          "lower"       "upper"#> [6] "lower_joint" "upper_joint" "y"

The package provides the evaluation function

(mse_var<-mse(pred_var, y_test))#>     y1     y2     y3     y4#>  2.416 22.739  0.372  3.115

VHAR

(pred_vhar<-predict(model_vhar,n_ahead = h))#>         y1   y2   y3   y4#>  [1,] 17.0 37.5 9.57 22.4#>  [2,] 16.9 37.4 9.56 22.5#>  [3,] 16.8 37.3 9.55 22.5#>  [4,] 16.7 37.2 9.54 22.5#>  [5,] 16.6 37.2 9.53 22.6#>  [6,] 16.5 37.1 9.52 22.6#>  [7,] 16.4 37.0 9.51 22.6#>  [8,] 16.3 36.9 9.49 22.6#>  [9,] 16.2 36.9 9.48 22.6#> [10,] 16.2 36.8 9.46 22.6#> [11,] 16.1 36.7 9.45 22.7#> [12,] 16.0 36.7 9.43 22.7#> [13,] 15.9 36.6 9.42 22.7#> [14,] 15.9 36.6 9.41 22.7#> [15,] 15.8 36.5 9.40 22.8#> [16,] 15.8 36.5 9.40 22.8#> [17,] 15.7 36.4 9.39 22.9#> [18,] 15.7 36.4 9.39 22.9#> [19,] 15.7 36.3 9.39 23.0#> [20,] 15.6 36.3 9.39 23.0

MSE:

(mse_vhar<-mse(pred_vhar, y_test))#>    y1    y2    y3    y4#>  3.29 24.46  0.27  3.05

BVAR

(pred_bvar<-predict(model_bvar,n_ahead = h))#>         y1   y2   y3   y4#>  [1,] 17.0 37.4 9.52 22.4#>  [2,] 17.0 37.3 9.51 22.6#>  [3,] 16.9 37.1 9.51 22.7#>  [4,] 16.8 37.0 9.51 22.8#>  [5,] 16.8 36.9 9.51 22.9#>  [6,] 16.7 36.8 9.52 22.9#>  [7,] 16.7 36.7 9.52 23.0#>  [8,] 16.6 36.6 9.52 23.1#>  [9,] 16.6 36.5 9.52 23.2#> [10,] 16.5 36.3 9.53 23.3#> [11,] 16.5 36.2 9.53 23.3#> [12,] 16.4 36.1 9.53 23.4#> [13,] 16.4 36.0 9.53 23.5#> [14,] 16.4 35.9 9.53 23.5#> [15,] 16.3 35.8 9.53 23.6#> [16,] 16.3 35.7 9.54 23.6#> [17,] 16.3 35.6 9.54 23.7#> [18,] 16.2 35.5 9.54 23.8#> [19,] 16.2 35.4 9.54 23.8#> [20,] 16.2 35.3 9.54 23.9

MSE:

(mse_bvar<-mse(pred_bvar, y_test))#>     y1     y2     y3     y4#>  2.202 19.792  0.319  3.414

BVHAR

VAR-type Minnesota

(pred_bvhar_v1<-predict(model_bvhar_v1,n_ahead = h))#>         y1   y2   y3   y4#>  [1,] 16.9 37.4 9.53 22.4#>  [2,] 16.9 37.2 9.50 22.5#>  [3,] 16.8 37.1 9.48 22.5#>  [4,] 16.8 36.9 9.47 22.6#>  [5,] 16.7 36.8 9.46 22.7#>  [6,] 16.6 36.7 9.45 22.7#>  [7,] 16.5 36.6 9.44 22.8#>  [8,] 16.5 36.5 9.43 22.8#>  [9,] 16.4 36.4 9.43 22.8#> [10,] 16.3 36.3 9.42 22.9#> [11,] 16.3 36.2 9.41 22.9#> [12,] 16.2 36.1 9.41 23.0#> [13,] 16.2 36.0 9.40 23.0#> [14,] 16.1 36.0 9.40 23.1#> [15,] 16.1 35.9 9.40 23.1#> [16,] 16.1 35.8 9.40 23.2#> [17,] 16.0 35.8 9.40 23.2#> [18,] 16.0 35.7 9.40 23.3#> [19,] 16.0 35.6 9.40 23.3#> [20,] 16.0 35.5 9.40 23.4

MSE:

(mse_bvhar_v1<-mse(pred_bvhar_v1, y_test))#>     y1     y2     y3     y4#>  2.655 19.914  0.256  3.103

VHAR-type Minnesota

(pred_bvhar_v2<-predict(model_bvhar_v2,n_ahead = h))#>         y1   y2   y3   y4#>  [1,] 16.9 37.4 9.53 22.4#>  [2,] 16.9 37.2 9.50 22.5#>  [3,] 16.8 37.0 9.47 22.5#>  [4,] 16.8 36.9 9.46 22.6#>  [5,] 16.7 36.8 9.45 22.6#>  [6,] 16.6 36.7 9.44 22.7#>  [7,] 16.5 36.6 9.43 22.7#>  [8,] 16.5 36.5 9.43 22.8#>  [9,] 16.4 36.4 9.42 22.8#> [10,] 16.4 36.3 9.41 22.9#> [11,] 16.3 36.2 9.40 22.9#> [12,] 16.2 36.1 9.40 22.9#> [13,] 16.2 36.0 9.39 23.0#> [14,] 16.2 35.9 9.39 23.0#> [15,] 16.1 35.9 9.39 23.1#> [16,] 16.1 35.8 9.39 23.1#> [17,] 16.0 35.7 9.39 23.2#> [18,] 16.0 35.7 9.39 23.2#> [19,] 16.0 35.6 9.39 23.3#> [20,] 16.0 35.5 9.39 23.3

MSE:

(mse_bvhar_v2<-mse(pred_bvhar_v2, y_test))#>     y1     y2     y3     y4#>  2.630 19.668  0.252  3.095

Compare

Region

autoplot(predbvhar) andautolayer(predbvhar) draws the results of theforecasting.

autoplot(pred_var,x_cut =1470,ci_alpha = .7,type ="wrap")+autolayer(pred_vhar,ci_alpha = .5)+autolayer(pred_bvar,ci_alpha = .4)+autolayer(pred_bvhar_v1,ci_alpha = .2)+autolayer(pred_bvhar_v2,ci_alpha = .1)+geom_eval(y_test,colour ="#000000",alpha = .5)

Error

Mean of MSE

list(VAR = mse_var,VHAR = mse_vhar,BVAR = mse_bvar,BVHAR1 = mse_bvhar_v1,BVHAR2 = mse_bvhar_v2)|>lapply(mean)|>unlist()|>sort()#> BVHAR2   BVAR BVHAR1    VAR   VHAR#>   6.41   6.43   6.48   7.16   7.77

For each variable, we can see the error with plot.

list(  pred_var,  pred_vhar,  pred_bvar,  pred_bvhar_v1,  pred_bvhar_v2)|>gg_loss(y = y_test,"mse")

Relative MAPE (MAPE), benchmark model: VAR

list(VAR = pred_var,VHAR = pred_vhar,BVAR = pred_bvar,BVHAR1 = pred_bvhar_v1,BVHAR2 = pred_bvhar_v2)|>lapply(rmape,pred_bench = pred_var,y = y_test)|>unlist()#>    VAR   VHAR   BVAR BVHAR1 BVHAR2#>  1.000  1.020  0.965  0.954  0.948

Out-of-Sample Forecasting

In time series research, out-of-sample forecasting plays a key role.So, we provide out-of-sample forecasting function based on

Rolling windows

forecast_roll(object, n_ahead, y_test) conducts h >=1 step rolling windows forecasting.

It fixes window size and moves the window. The window is the trainingset. In this package, we setwindow size = original inputdata.

Iterating the step

  1. The model is fitted in the training set.
  2. With the fitted model, researcher should forecast the next h >= 1step ahead. The longest forecast horizon isnum_test - h + 1.
  3. After this window, move the window and do the same process.
  4. Get forecasted values until possible (longest forecasthorizon).

5-step out-of-sample:

(var_roll<-forecast_roll(model_var,5, y_test))#>         y1   y2   y3   y4#>  [1,] 16.7 37.1 9.58 22.7#>  [2,] 17.6 34.9 9.48 23.4#>  [3,] 16.7 35.0 9.73 22.5#>  [4,] 16.6 32.5 8.98 21.7#>  [5,] 16.0 31.6 8.83 22.3#>  [6,] 16.5 32.9 8.64 22.6#>  [7,] 17.1 32.9 9.12 22.8#>  [8,] 17.5 32.2 9.27 22.5#>  [9,] 17.5 30.7 9.57 22.1#> [10,] 18.5 32.8 9.93 22.2#> [11,] 18.2 31.6 9.67 21.5#> [12,] 18.2 30.5 9.47 22.6#> [13,] 18.1 30.9 9.19 21.5#> [14,] 17.3 30.7 8.83 21.0#> [15,] 19.0 31.3 9.18 23.2#> [16,] 17.6 31.1 8.71 22.9

Denote that the nrow is longest forecast horizon.

class(var_roll)#> [1] "predbvhar_roll" "bvharcv"names(var_roll)#> [1] "process"  "forecast" "eval_id"  "y"

To apply the same evaluation methods, a class namedbvharcv has been defined. You can use the functionsabove.

vhar_roll<-forecast_roll(model_vhar,5, y_test)bvar_roll<-forecast_roll(model_bvar,5, y_test)bvhar_roll_v1<-forecast_roll(model_bvhar_v1,5, y_test)bvhar_roll_v2<-forecast_roll(model_bvhar_v2,5, y_test)

Relative MAPE, benchmark model: VAR

list(VAR = var_roll,VHAR = vhar_roll,BVAR = bvar_roll,BVHAR1 = bvhar_roll_v1,BVHAR2 = bvhar_roll_v2)|>lapply(rmape,pred_bench = var_roll,y = y_test)|>unlist()#>    VAR   VHAR   BVAR BVHAR1 BVHAR2#>  1.000  0.989  0.982  0.973  0.973

Expanding Windows

forecast_expand(object, n_ahead, y_test) conducts h>= 1 step expanding window forecasting.

Different with rolling windows, expanding windows method fixes thestarting point. The other is same.

(var_expand<-forecast_expand(model_var,5, y_test))#>         y1   y2   y3   y4#>  [1,] 16.7 37.1 9.58 22.7#>  [2,] 17.6 34.9 9.48 23.4#>  [3,] 16.7 35.0 9.73 22.5#>  [4,] 16.6 32.4 8.97 21.7#>  [5,] 16.0 31.6 8.82 22.3#>  [6,] 16.5 32.9 8.63 22.6#>  [7,] 17.1 32.9 9.12 22.8#>  [8,] 17.5 32.2 9.27 22.5#>  [9,] 17.5 30.7 9.58 22.1#> [10,] 18.5 32.8 9.95 22.2#> [11,] 18.2 31.6 9.68 21.5#> [12,] 18.2 30.5 9.48 22.6#> [13,] 18.1 30.9 9.19 21.5#> [14,] 17.3 30.7 8.84 21.0#> [15,] 19.0 31.3 9.17 23.2#> [16,] 17.6 31.1 8.70 22.9

The class isbvharcv.

class(var_expand)#> [1] "predbvhar_expand" "bvharcv"names(var_expand)#> [1] "process"  "forecast" "eval_id"  "y"
vhar_expand<-forecast_expand(model_vhar,5, y_test)bvar_expand<-forecast_expand(model_bvar,5, y_test)bvhar_expand_v1<-forecast_expand(model_bvhar_v1,5, y_test)bvhar_expand_v2<-forecast_expand(model_bvhar_v2,5, y_test)

Relative MAPE, benchmark model: VAR

list(VAR = var_expand,VHAR = vhar_expand,BVAR = bvar_expand,BVHAR1 = bvhar_expand_v1,BVHAR2 = bvhar_expand_v2)|>lapply(rmape,pred_bench = var_expand,y = y_test)|>unlist()#>    VAR   VHAR   BVAR BVHAR1 BVHAR2#>  1.000  0.985  0.982  0.969  0.969

[8]ページ先頭

©2009-2025 Movatter.jp