Movatterモバイル変換


[0]ホーム

URL:


SSOSVM: Stream Suitable Online Support Vector Machines

Soft-margin support vector machines (SVMs) are a common class of classification models. The training of SVMs usually requires that the data be available all at once in a single batch, however the Stochastic majorization-minimization (SMM) algorithm framework allows for the training of SVMs on streamed data instead Nguyen, Jones & McLachlan(2018)<doi:10.1007/s42081-018-0001-y>. This package utilizes the SMM framework to provide functions for training SVMs with hinge loss, squared-hinge loss, and logistic loss.

Version:0.2.2
Imports:Rcpp (≥ 0.12.13),mvtnorm
LinkingTo:Rcpp,RcppArmadillo
Suggests:testthat,knitr,rmarkdown,ggplot2,gganimate,gifski
Published:2025-09-20
DOI:10.32614/CRAN.package.SSOSVM
Author:Andrew Thomas Jones [aut, cre], Hien Duy Nguyen [aut], Geoffrey J. McLachlan [aut]
Maintainer:Andrew Thomas Jones <andrewthomasjones at gmail.com>
License:GPL-3
NeedsCompilation:yes
Materials:README,NEWS
CRAN checks:SSOSVM results

Documentation:

Reference manual:SSOSVM.html ,SSOSVM.pdf

Downloads:

Package source: SSOSVM_0.2.2.tar.gz
Windows binaries: r-devel:SSOSVM_0.2.2.zip, r-release:SSOSVM_0.2.2.zip, r-oldrel:SSOSVM_0.2.2.zip
macOS binaries: r-release (arm64):SSOSVM_0.2.2.tgz, r-oldrel (arm64):SSOSVM_0.2.2.tgz, r-release (x86_64):SSOSVM_0.2.2.tgz, r-oldrel (x86_64):SSOSVM_0.2.2.tgz
Old sources: SSOSVM archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=SSOSVMto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp