Movatterモバイル変換


[0]ホーム

URL:


singR: Simultaneous Non-Gaussian Component Analysis

Implementation of SING algorithm to extract joint and individual non-Gaussian components from two datasets. SING uses an objective function that maximizes the skewness and kurtosis of latent components with a penalty to enhance the similarity between subject scores. Unlike other existing methods, SING does not use PCA for dimension reduction, but rather uses non-Gaussianity, which can improve feature extraction. Benjamin B.Risk, Irina Gaynanova (2021) <doi:10.1214/21-AOAS1466>.

Version:0.1.3
Depends:R (≥ 2.10)
Imports:MASS (≥ 7.3-57),Rcpp (≥ 1.0.8.3),clue (≥ 0.3-61),gam (≥1.20.1),ICtest (≥ 0.3-5)
LinkingTo:Rcpp,RcppArmadillo
Suggests:knitr,covr,testthat (≥ 3.0.0),rmarkdown
Published:2025-01-27
DOI:10.32614/CRAN.package.singR
Author:Liangkang WangORCID iD [aut, cre], Irina GaynanovaORCID iD [aut], Benjamin RiskORCID iD [aut]
Maintainer:Liangkang Wang <liangkang_wang at brown.edu>
License:MIT + fileLICENSE
NeedsCompilation:yes
Citation:singR citation info
CRAN checks:singR results

Documentation:

Reference manual:singR.html ,singR.pdf
Vignettes:singR-tutorial (source,R code)

Downloads:

Package source: singR_0.1.3.tar.gz
Windows binaries: r-devel:singR_0.1.3.zip, r-release:singR_0.1.3.zip, r-oldrel:singR_0.1.3.zip
macOS binaries: r-release (arm64):singR_0.1.3.tgz, r-oldrel (arm64):singR_0.1.3.tgz, r-release (x86_64):singR_0.1.3.tgz, r-oldrel (x86_64):singR_0.1.3.tgz
Old sources: singR archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=singRto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp