Movatterモバイル変換


[0]ホーム

URL:


Type:Package
Title:Portmanteau Local Feature Discrimination for Matrix-Variate Data
Version:0.2.1
Date:2025-05-20
Maintainer:Zengchao Xu <zengc.xu@aliyun.com>
Description: The portmanteau local feature discriminant approach first identifies the local discriminant features and their differential structures, then constructs the discriminant rule by pooling the identified local features together. This method is applicable to high-dimensional matrix-variate data. See the paper by Xu, Luo and Chen (2023, <doi:10.1007/s13171-021-00255-2>).
Depends:R (≥ 3.5.0)
Imports:Rcpp (≥ 1.0.2), mathjaxr
LinkingTo:Rcpp (≥ 1.0.2), RcppArmadillo (≥ 0.9.800)
URL:https://github.com/paradoxical-rhapsody/PLFD
BugReports:https://github.com/paradoxical-rhapsody/PLFD/issues
License:GPL-3
Language:en-US
Encoding:UTF-8
RoxygenNote:7.3.2
Suggests:knitr, rmarkdown, markdown
RdMacros:mathjaxr
VignetteBuilder:knitr
NeedsCompilation:yes
Packaged:2025-05-20 01:20:11 UTC; zengc
Author:Zengchao Xu [aut, cre], Shan Luo [aut], Zehua Chen [aut]
Repository:CRAN
Date/Publication:2025-05-20 04:30:02 UTC

PLFD: Portmanteau Local Feature Discrimination for Matrix-Variate Data

Description

The portmanteau local feature discriminant approach first identifies the local discriminant features and their differential structures, then constructs the discriminant rule by pooling the identified local features together. This method is applicable to high-dimensional matrix-variate data. See the paper by Xu, Luo and Chen (2023,doi:10.1007/s13171-021-00255-2).

Author(s)

Maintainer: Zengchao Xuzengc.xu@aliyun.com

Authors:

See Also

Useful links:


PLFD

Description

A portmanteau local feature discrimination (PLFD) approach to the classification withhigh-dimensional matrix-variate data.

Usage

plfd(x, y, r0, c0, blockList, blockMode = NULL, permNum = 100, alpha = 0)

Arguments

x

Array of \(r \times c \times n\).

y

Vector of length-\(n\) with values 1 or 2.

r0,c0

Row and column size of blocks. See details.

blockList

List including the index set of pre-specified blocks. See details.

blockMode

How the differential structure of \(M_1 - M_2\) aredetected. The default (blockMode=NULL) does NOT detect the structure of featureblocks. IfblockMode="fd"(or"forward"), a forward stepwise procedure isconducted to detect the nonzero positions of feature blocks, wherein BIC servesas the stopping rule.

permNum

Rounds of permutation.

alpha

Theupper-\(\alpha\) quantile of the permutation statistic.

Details

There are two ways to specify the blocks under consideration. In the case thatthe matrix-variate is partition into non-overlapping blocks that share the commonrow size and column size, these sizes can be specified byr0 andc0. Otherwise, theblocks can be flexibly specified by parameterblockList, which should be a list inwhich each element includesrIdx andcIdx corresponding to the row and column indexset of a block. See examples.

Value

List.

References

Xu Z., Luo S. and Chen Z. (2021). A Portmanteau Local Feature DiscriminationApproach to the Classification with High-dimensional Matrix-variate Data. Sankhya A.doi:10.1007/s13171-021-00255-2

Examples

set.seed(2023)rDim <- 20cDim <- 20n <- 100y <- sample(1:2, n, TRUE, c(0.5, 0.5))x <- array(rnorm(rDim*cDim*n), dim=c(rDim, cDim, n))x[, , y==2] <- (x[, , y==2] + 1.0)ntest <- 200ytest <- sample(1:2, ntest, TRUE, c(0.5, 0.5))xtest <- array(rnorm(rDim*cDim*ntest), dim=c(rDim, cDim, ntest))xtest[, , ytest==2] <- (xtest[, , ytest==2] + 1.0)## Uniform partitionprint( plfd(x, y, r0=5, c0=5) )## Pre-specify feature blocksblockList <- list(list(rIdx=1:5, cIdx=1:5),                   list(rIdx=6:10, cIdx=1:5),                   list(rIdx=3:9, cIdx=2:8))print( plfd.model <- plfd(x, y, blockList=blockList) )## Predictpredict(plfd.model, xtest, ytest)

Predict Method forplfd

Description

Predict Method forplfd

Usage

## S3 method for class 'plfd'predict(object, x, y, ...)

Arguments

object

plfd object.

x

Array, matrix-variate data to be predicted.

y

Vector (optional), Labels ofx with value1 or2.

...

Ignored currently.

Value

list(W, y.hat, mcr) with


Print Method forplfd

Description

Print Method forplfd

Usage

## S3 method for class 'plfd'print(x, ...)

Arguments

x

plfd object.

...

Ignored currently.


[8]ページ先頭

©2009-2025 Movatter.jp