Movatterモバイル変換


[0]ホーム

URL:


ivx: Robust EconometricInference

DOICRAN statusLifecycle: stableR-CMD-checkCodecov test coverage

Drawing statistical inference on the coefficients of a short- orlong-horizon predictive regression with persistent regressors by usingthe IVX method ofMagdalinos andPhillips (2009) andKostakis,Magdalinos and Stamatogiannis (2015).

Installation

You can install the development version fromGitHub with:

# Install release version from CRANinstall.packages("ivx")# install.packages("devtools")devtools::install_github("kvasilopoulos/ivx")

Usage

library(ivx)library(magrittr)#> Warning: package 'magrittr' was built under R version 4.3.3

This is a basic example, lets load the data first:

# Monthly data from Kostakis et al (2014)kms%>%names()#>  [1] "Date" "DE"   "LTY"  "DY"   "DP"   "TBL"  "EP"   "BM"   "INF"  "DFY"#> [11] "NTIS" "TMS"  "Ret"

Univariate

And then do the univariate estimation:

ivx(Ret~ DP,data = kms)%>%summary()#>#> Call:#> ivx(formula = Ret ~ DP, data = kms, horizon = 1)#>#> Coefficients:#>    Estimate Wald Ind Pr(> chi)#> DP 0.006489    2.031     0.154#>#> Joint Wald statistic:  2.031 on 1 DF, p-value 0.1541#> Multiple R-squared:  0.002844,   Adjusted R-squared:  0.001877ivx(Ret~ DP,data = kms,horizon =4)%>%summary()#>#> Call:#> ivx(formula = Ret ~ DP, data = kms, horizon = 4)#>#> Coefficients:#>    Estimate Wald Ind Pr(> chi)#> DP 0.006931    2.271     0.132#>#> Joint Wald statistic:  2.271 on 1 DF, p-value 0.1318#> Multiple R-squared:  0.01167,    Adjusted R-squared:  0.01358

Multivariate

And the multivariate estimation, for one or multiple horizons:

ivx(Ret~ DP+ TBL,data = kms)%>%summary()#>#> Call:#> ivx(formula = Ret ~ DP + TBL, data = kms, horizon = 1)#>#> Coefficients:#>      Estimate Wald Ind Pr(> chi)#> DP   0.006145    1.819     0.177#> TBL -0.080717    1.957     0.162#>#> Joint Wald statistic:  3.644 on 2 DF, p-value 0.1617#> Multiple R-squared:  0.004968,   Adjusted R-squared:  0.003036ivx(Ret~ DP+ TBL,data = kms,horizon =4)%>%summary()#>#> Call:#> ivx(formula = Ret ~ DP + TBL, data = kms, horizon = 4)#>#> Coefficients:#>      Estimate Wald Ind Pr(> chi)#> DP   0.006579    2.045     0.153#> TBL -0.073549    1.595     0.207#>#> Joint Wald statistic:  3.527 on 2 DF, p-value 0.1715#> Multiple R-squared:  0.018,  Adjusted R-squared:  0.01895

Yang et al. (2020) IVX-ARmethodology

ivx_ar(hpi~ cpi,data = ylpc)%>%summary()#>#> Call:#> ivx_ar(formula = hpi ~ cpi, data = ylpc, horizon = 1)#>#> Auto () with AR terms q = 4#>#> Coefficients:#>       Estimate Wald Ind Pr(> chi)#> cpi -0.0001775    4.326    0.0375 *#> ---#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1#>#> Joint Wald statistic:  4.326 on 1 DF, p-value 0.03753#> Multiple R-squared:  0.02721,    Adjusted R-squared:  0.02142#> Wald AR statistic: 132.3 on 4 DF, p-value < 2.2e-16

Please note that the ‘ivx’ project is released with aContributorCode of Conduct. By contributing to this project, you agree to abideby its terms.


[8]ページ先頭

©2009-2025 Movatter.jp