| Type: | Package |
| Title: | Soft Maximin Estimation for Large Scale Array-Tensor Models |
| Version: | 1.0.3 |
| Date: | 2020-09-17 |
| Author: | Adam Lund |
| Maintainer: | Adam Lund <adam.lund@math.ku.dk> |
| Description: | Efficient design matrix free procedure for solving a soft maximin problem for large scale array-tensor structured models, see Lund, Mogensen and Hansen (2019) <doi:10.48550/arXiv.1805.02407>. Currently Lasso and SCAD penalized estimation is implemented. |
| License: | GPL-2 |GPL-3 [expanded from: GPL (≥ 2)] |
| Imports: | Rcpp (≥ 0.12.12) |
| LinkingTo: | Rcpp, RcppArmadillo |
| RoxygenNote: | 7.1.1 |
| NeedsCompilation: | yes |
| Packaged: | 2020-09-17 09:54:32 UTC; adamlund |
| Repository: | CRAN |
| Date/Publication: | 2020-09-17 13:00:07 UTC |
The Rotated H-transform of a 3d Array by a Matrix
Description
This function is an implementation of the\rho-operator found inCurrie et al 2006. It forms the basis of the GLAM arithmetic.
Usage
RH(M, A)Arguments
M | a |
A | a 3d array of size |
Details
For details seeCurrie et al 2006. Note that this particular implementationis not used in the routines underlying the optimization procedure.
Value
A 3d array of sizep_2 \times p_3 \times n.
Author(s)
Adam Lund
References
Currie, I. D., M. Durban, and P. H. C. Eilers (2006). Generalized lineararray models with applications to multidimensional smoothing.Journal of the Royal Statistical Society. Series B. 68, 259-280. url = http://dx.doi.org/10.1111/j.1467-9868.2006.00543.x.
Examples
n1 <- 65; n2 <- 26; n3 <- 13; p1 <- 13; p2 <- 5; p3 <- 4##marginal design matrices (Kronecker components)X1 <- matrix(rnorm(n1 * p1), n1, p1)X2 <- matrix(rnorm(n2 * p2), n2, p2)X3 <- matrix(rnorm(n3 * p3), n3, p3)Beta <- array(rnorm(p1 * p2 * p3, 0, 1), c(p1 , p2, p3))max(abs(c(RH(X3, RH(X2, RH(X1, Beta)))) - kronecker(X3, kronecker(X2, X1)) %*% c(Beta)))Soft Maximin Estimation for Large Scale Array Data with Known Groups
Description
Efficient design matrix free procedure for solving a soft maximin problem forlarge scale array-tensor structured models, seeLund et al., 2020.Currently Lasso and SCAD penalized estimation is implemented.
Usage
softmaximin(X, Y, zeta, penalty = c("lasso", "scad"), alg = c("npg", "fista"), nlambda = 30, lambda.min.ratio = 1e-04, lambda = NULL, penalty.factor = NULL, reltol = 1e-05, maxiter = 15000, steps = 1, btmax = 100, c = 0.0001, tau = 2, M = 4, nu = 1, Lmin = 0, log = TRUE)Arguments
X | list containing the Kronecker components (1, 2 or 3) of the Kronecker design matrix.These are matrices of sizes |
Y | array of size |
zeta | strictly positive float controlling the softmaximin approximation accuracy. |
penalty | string specifying the penalty type. Possible values are |
alg | string specifying the optimization algorithm. Possible values are |
nlambda | positive integer giving the number of |
lambda.min.ratio | strictly positive float giving the smallest value for |
lambda | sequence of strictly positive floats used as penalty parameters. |
penalty.factor | array of size |
reltol | strictly positive float giving the convergence tolerance for the inner loop. |
maxiter | positive integer giving the maximum number of iterations allowed for each |
steps | strictly positive integer giving the number of steps used in the multi-step adaptive lasso algorithm for non-convex penalties.Automatically set to 1 when |
btmax | strictly positive integer giving the maximum number of backtracking steps allowed in each iteration. Default is |
c | strictly positive float used in the NPG algorithm. Default is |
tau | strictly positive float used to control the stepsize for NPG. Default is |
M | positive integer giving the look back for the NPG. Default is |
nu | strictly positive float used to control the stepsize. A value less that 1 will decreasethe stepsize and a value larger than one will increase it. Default is |
Lmin | non-negative float used by the NPG algorithm to control the stepsize. For the default |
log | logical variable indicating whether to use log-loss. TRUE is default and yields the loss below. |
Details
FollowingLund et al., 2020 this package solves the optimization problem for a linearmodel for heterogeneousd-dimensional array data (d=1,2,3) organized inG known groups,and with identical tensor structured design matrixX across all groups. Specificallyn = \prod_i^d n_i is thenumber of observations in each group,Y_g then_1\times \cdots \times n_d response arrayfor groupg \in \{1,\ldots,G\}, andX an\times p design matrix, with tensor structure
X = \bigotimes_{i=1}^d X_i.
Ford =1,2,3,X_1,\ldots, X_d are the marginaln_i\times p_i design matrices (Kronecker components).Using the GLAM framework the model equation for groupg\in \{1,\ldots,G\} is expressed as
Y_g = \rho(X_d,\rho(X_{d-1},\ldots,\rho(X_1,B_g))) + E_g,
where\rho is the so called rotatedH-transfrom (seeCurrie et al., 2006),B_g for eachg is a (random)p_1\times\cdots\times p_d parameter arrayandE_g is an_1\times \cdots \times n_d error array.
This package solves the penalized soft maximin problem fromLund et al., 2020, given by
\min_{\beta}\frac{1}{\zeta}\log\bigg(\sum_{g=1}^G \exp(-\zeta \hat V_g(\beta))\bigg) + \lambda \Vert\beta\Vert_1, \quad \zeta > 0,\lambda \geq 0
for the setup described above. Note that
\hat V_g(\beta):=\frac{1}{n}(2\beta^\top X^\top vec(Y_g)-\beta^\top X^\top X\beta),
is the empirical explained variance fromMeinshausen and Buhlmann, 2015. SeeLund et al., 2020 for more details and references.
Ford=1,2,3, using only the marginal matricesX_1,X_2,\ldots (ford=1 there is only one marginal), the functionsoftmaximinsolves the soft maximin problem for a sequence of penalty parameters\lambda_{max}>\ldots >\lambda_{min}>0.
Two optimization algorithms are implemented, a non-monotoneproximal gradient (NPG) algorithm and a fast iterative soft thresholding algorithm (FISTA).We note that this package also solves the problem above with the penalty given by the SCADpenalty, using the multiple step adaptive lasso procedure to loop over the proximal algorithm.
Value
An object with S3 Class "SMMA".
spec | A string indicating the array dimension (1, 2 or 3) and the penalty. |
coef | A |
lambda | A vector containing the sequence of penalty values used in the estimation procedure. |
Obj | A matrix containing the objective values for each iteration and each model. |
df | The number of nonzero coefficients for each value of |
dimcoef | A vector giving the dimension of the model coefficient array |
dimobs | A vector giving the dimension of the observation (response) array |
Iter | A list with 4 items: |
Author(s)
Adam Lund
Maintainer: Adam Lund,adam.lund@math.ku.dk
References
Lund, A., S. W. Mogensen and N. R. Hansen (2020). Soft Maximin Estimation for Heterogeneous Array Data.Preprint.
Meinshausen, N and P. Buhlmann (2015). Maximin effects in inhomogeneous large-scale data.The Annals of Statistics. 43, 4, 1801-1830. url = https://doi.org/10.1214/15-AOS1325.
Currie, I. D., M. Durban, and P. H. C. Eilers (2006). Generalized lineararray models with applications to multidimensional smoothing.Journal of the Royal Statistical Society. Series B. 68, 259-280. url = http://dx.doi.org/10.1111/j.1467-9868.2006.00543.x.
Examples
##size of examplen1 <- 65; n2 <- 26; n3 <- 13; p1 <- 13; p2 <- 5; p3 <- 4##marginal design matrices (Kronecker components)X1 <- matrix(rnorm(n1 * p1), n1, p1)X2 <- matrix(rnorm(n2 * p2), n2, p2)X3 <- matrix(rnorm(n3 * p3), n3, p3)X <- list(X1, X2, X3)component <- rbinom(p1 * p2 * p3, 1, 0.1)Beta1 <- array(rnorm(p1 * p2 * p3, 0, 0.1) + component, c(p1 , p2, p3))mu1 <- RH(X3, RH(X2, RH(X1, Beta1)))Y1 <- array(rnorm(n1 * n2 * n3), dim = c(n1, n2, n3)) + mu1Beta2 <- array(rnorm(p1 * p2 * p3, 0, 0.1) + component, c(p1 , p2, p3))mu2 <- RH(X3, RH(X2, RH(X1, Beta2)))Y2 <- array(rnorm(n1 * n2 * n3), dim = c(n1, n2, n3)) + mu2Beta3 <- array(rnorm(p1 * p2 * p3, 0, 0.1) + component, c(p1 , p2, p3))mu3 <- RH(X3, RH(X2, RH(X1, Beta3)))Y3 <- array(rnorm(n1 * n2 * n3), dim = c(n1, n2, n3)) + mu3Beta4 <- array(rnorm(p1 * p2 * p3, 0, 0.1) + component, c(p1 , p2, p3))mu4 <- RH(X3, RH(X2, RH(X1, Beta4)))Y4 <- array(rnorm(n1 * n2 * n3), dim = c(n1, n2, n3)) + mu4Beta5 <- array(rnorm(p1 * p2 * p3, 0, 0.1) + component, c(p1 , p2, p3))mu5 <- RH(X3, RH(X2, RH(X1, Beta5)))Y5 <- array(rnorm(n1 * n2 * n3), dim = c(n1, n2, n3)) + mu5Y <- array(NA, c(dim(Y1), 5))Y[,,, 1] <- Y1; Y[,,, 2] <- Y2; Y[,,, 3] <- Y3; Y[,,, 4] <- Y4; Y[,,, 5] <- Y5;fit <- softmaximin(X, Y, zeta = 10, penalty = "lasso", alg = "npg")Betafit <- fit$coefmodelno <- 15m <- min(Betafit[ , modelno], c(component))M <- max(Betafit[ , modelno], c(component))plot(c(component), type="l", ylim = c(m, M))lines(Betafit[ , modelno], col = "red")Make Prediction From a SMMA Object
Description
Given new covariate data this function computes the linear predictorsbased on the estimated model coefficients in an object produced by the functionsoftmaximin. Note that thedata can be supplied in two different formats: i) as an' \times p matrix (p is the number of modelcoefficients andn' is the number of new data points) or ii) as a list of two or three matrices each ofsizen_i' \times p_i, i = 1, 2, 3 (n_i' is the number of new marginal data points in theith dimension).
Usage
## S3 method for class 'SMMA'predict(object, x = NULL, X = NULL, ...)Arguments
object | An object of class SMMA, produced with |
x | a matrix of size |
X | a list containing the data matrices each of size |
... | ignored |
Value
A list of lengthnlambda containing the linear predictors for each model. Ifnew covariate data is supplied in onen' \times p matrixx eachitem is a vector of lengthn'. If the data is supplied as a list ofmatrices each of sizen'_{i} \times p_i, each item is an array of sizen'_1 \times \cdots \times n'_d, withd\in \{1,2,3\}.
Author(s)
Adam Lund
Examples
##size of examplen1 <- 65; n2 <- 26; n3 <- 13; p1 <- 13; p2 <- 5; p3 <- 4##marginal design matrices (Kronecker components)X1 <- matrix(rnorm(n1 * p1, 0, 0.5), n1, p1)X2 <- matrix(rnorm(n2 * p2, 0, 0.5), n2, p2)X3 <- matrix(rnorm(n3 * p3, 0, 0.5), n3, p3)X <- list(X1, X2, X3)component <- rbinom(p1 * p2 * p3, 1, 0.1)Beta1 <- array(rnorm(p1 * p2 * p3, 0, .1) + component, c(p1 , p2, p3))Beta2 <- array(rnorm(p1 * p2 * p3, 0, .1) + component, c(p1 , p2, p3))mu1 <- RH(X3, RH(X2, RH(X1, Beta1)))mu2 <- RH(X3, RH(X2, RH(X1, Beta2)))Y1 <- array(rnorm(n1 * n2 * n3, mu1), dim = c(n1, n2, n3))Y2 <- array(rnorm(n1 * n2 * n3, mu2), dim = c(n1, n2, n3))Y <- array(NA, c(dim(Y1), 2))Y[,,, 1] <- Y1; Y[,,, 2] <- Y2;fit <- softmaximin(X, Y, zeta = 10, penalty = "lasso", alg = "npg")##new data in matrix formx <- matrix(rnorm(p1 * p2 * p3), nrow = 1)predict(fit, x = x)[[15]]##new data in tensor component formX1 <- matrix(rnorm(p1), nrow = 1)X2 <- matrix(rnorm(p2), nrow = 1)X3 <- matrix(rnorm(p3), nrow = 1)predict(fit, X = list(X1, X2, X3))[[15]]Print Function for objects of Class SMMA
Description
This function will print some information about the SMMA object.
Usage
## S3 method for class 'SMMA'print(x, ...)Arguments
x | a SMMA object |
... | ignored |
Author(s)
Adam Lund
Examples
##size of example n1 <- 65; n2 <- 26; n3 <- 13; p1 <- 13; p2 <- 5; p3 <- 4##marginal design matrices (Kronecker components)X1 <- matrix(rnorm(n1 * p1, 0, 0.5), n1, p1) X2 <- matrix(rnorm(n2 * p2, 0, 0.5), n2, p2) X3 <- matrix(rnorm(n3 * p3, 0, 0.5), n3, p3) X <- list(X1, X2, X3)component <- rbinom(p1 * p2 * p3, 1, 0.1) Beta1 <- array(rnorm(p1 * p2 * p3, 0, .1) + component, c(p1 , p2, p3))Beta2 <- array(rnorm(p1 * p2 * p3, 0, .1) + component, c(p1 , p2, p3))mu1 <- RH(X3, RH(X2, RH(X1, Beta1)))mu2 <- RH(X3, RH(X2, RH(X1, Beta2)))Y1 <- array(rnorm(n1 * n2 * n3, mu1), dim = c(n1, n2, n3))Y2 <- array(rnorm(n1 * n2 * n3, mu2), dim = c(n1, n2, n3))Y <- array(NA, c(dim(Y1), 2))Y[,,, 1] <- Y1; Y[,,, 2] <- Y2;fit <- softmaximin(X, Y, zeta = 10, penalty = "lasso", alg = "npg")fit