Movatterモバイル変換


[0]ホーム

URL:


BayesRegDTR: Bayesian Regression for Dynamic Treatment Regimes

Methods to estimate optimal dynamic treatment regimes using Bayesian likelihood-based regression approach as described in Yu, W., & Bondell, H. D. (2023) <doi:10.1093/jrsssb/qkad016> Uses backward induction and dynamic programming theory for computing expected values. Offers options for future parallel computing.

Version:1.1.2
Depends:doRNG
Imports:Rcpp (≥ 1.0.13-1),mvtnorm,foreach,progressr, stats,future
LinkingTo:Rcpp,RcppArmadillo
Suggests:cli,testthat (≥ 3.0.0),doFuture
Published:2025-11-27
DOI:10.32614/CRAN.package.BayesRegDTR
Author:Jeremy Lim [aut], Weichang YuORCID iD [aut, cre]
Maintainer:Weichang Yu <weichang.yu at unimelb.edu.au>
BugReports:https://github.com/jlimrasc/BayesRegDTR/issues
License:GPL (≥ 3)
URL:https://github.com/jlimrasc/BayesRegDTR
NeedsCompilation:yes
Materials:README,NEWS
CRAN checks:BayesRegDTR results

Documentation:

Reference manual:BayesRegDTR.html ,BayesRegDTR.pdf

Downloads:

Package source: BayesRegDTR_1.1.2.tar.gz
Windows binaries: r-devel:BayesRegDTR_1.1.2.zip, r-release:BayesRegDTR_1.1.2.zip, r-oldrel:BayesRegDTR_1.1.2.zip
macOS binaries: r-release (arm64):BayesRegDTR_1.1.2.tgz, r-oldrel (arm64):BayesRegDTR_1.1.2.tgz, r-release (x86_64):BayesRegDTR_1.1.2.tgz, r-oldrel (x86_64):BayesRegDTR_1.1.2.tgz
Old sources: BayesRegDTR archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=BayesRegDTRto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp