Movatterモバイル変換


[0]ホーム

URL:


kamila: Methods for Clustering Mixed-Type Data

Implements methods for clustering mixed-type data, specifically combinations of continuous and nominal data. Special attention is paid to the often-overlooked problem of equitably balancing the contribution of the continuous and categorical variables. This package implements KAMILA clustering, a novel method for clustering mixed-type data in the spirit of k-means clustering. It does not require dummy coding of variables, and is efficient enough to scale to rather large data sets. Also implemented is Modha-Spangler clustering, which uses a brute-force strategy to maximize the cluster separation simultaneously in the continuous and categorical variables. For more information, see Foss, Markatou, Ray, & Heching (2016) <doi:10.1007/s10994-016-5575-7> and Foss & Markatou (2018) <doi:10.18637/jss.v083.i13>.

Version:0.1.2
Depends:R (≥ 3.0.0)
Imports:stats,abind,KernSmooth,gtools,Rcpp,plyr
LinkingTo:Rcpp
Suggests:testthat,clustMD,ggplot2,Hmisc
Published:2020-03-13
DOI:10.32614/CRAN.package.kamila
Author:Alexander Foss [aut, cre], Marianthi Markatou [aut]
Maintainer:Alexander Foss <alexanderhfoss at gmail.com>
BugReports:https://github.com/ahfoss/kamila/issues
License:GPL-3 | fileLICENSE
URL:https://github.com/ahfoss/kamila
NeedsCompilation:yes
Citation:kamila citation info
Materials:README
CRAN checks:kamila results

Documentation:

Reference manual:kamila.html ,kamila.pdf

Downloads:

Package source: kamila_0.1.2.tar.gz
Windows binaries: r-devel:kamila_0.1.2.zip, r-release:kamila_0.1.2.zip, r-oldrel:kamila_0.1.2.zip
macOS binaries: r-release (arm64):kamila_0.1.2.tgz, r-oldrel (arm64):kamila_0.1.2.tgz, r-release (x86_64):kamila_0.1.2.tgz, r-oldrel (x86_64):kamila_0.1.2.tgz
Old sources: kamila archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=kamilato link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp