Movatterモバイル変換


[0]ホーム

URL:


varbvs: Large-Scale Bayesian Variable Selection Using VariationalMethods

Fast algorithms for fitting Bayesian variable selection models and computing Bayes factors, in which the outcome (or response variable) is modeled using a linear regression or a logistic regression. The algorithms are based on the variational approximations described in "Scalable variational inference for Bayesian variable selection in regression, and its accuracy in genetic association studies" (P. Carbonetto & M. Stephens, 2012, <doi:10.1214/12-BA703>). This software has been applied to large data sets with over a million variables and thousands of samples.

Version:2.6-10
Depends:R (≥ 3.1.0)
Imports:methods,Matrix, stats, graphics,lattice,latticeExtra,Rcpp,nor1mix
LinkingTo:Rcpp
Suggests:curl,glmnet,qtl,knitr,rmarkdown,testthat
Published:2023-05-31
DOI:10.32614/CRAN.package.varbvs
Author:Peter Carbonetto [aut, cre], Matthew Stephens [aut], David Gerard [ctb]
Maintainer:Peter Carbonetto <peter.carbonetto at gmail.com>
BugReports:https://github.com/pcarbo/varbvs/issues
License:GPL (≥ 3)
URL:https://github.com/pcarbo/varbvs
NeedsCompilation:yes
Citation:varbvs citation info
CRAN checks:varbvs results

Documentation:

Reference manual:varbvs.html ,varbvs.pdf
Vignettes:Crohn's disease demo (source,R code)
QTL mapping demo (source,R code)
Cytokine signaling genes demo (source,R code)
varbvs leukemia demo (source,R code)

Downloads:

Package source: varbvs_2.6-10.tar.gz
Windows binaries: r-devel:varbvs_2.6-10.zip, r-release:varbvs_2.6-10.zip, r-oldrel:varbvs_2.6-10.zip
macOS binaries: r-release (arm64):varbvs_2.6-10.tgz, r-oldrel (arm64):varbvs_2.6-10.tgz, r-release (x86_64):varbvs_2.6-10.tgz, r-oldrel (x86_64):varbvs_2.6-10.tgz
Old sources: varbvs archive

Reverse dependencies:

Reverse imports:SelectBoost

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=varbvsto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp