Movatterモバイル変換


[0]ホーム

URL:


Type:Package
Title:Dose Titration Algorithm Tuning
Version:0.3-8
Date:2025-07-23
Maintainer:David C. Norris <david@precisionmethods.guru>
Depends:R (≥ 3.5.0), survival
Imports:km.ci, pomp, Hmisc, data.table, dplyr, r2d3, shiny, jsonlite,methods
Suggests:knitr, rmarkdown, lattice, latticeExtra, widgetframe, tidyr,RColorBrewer, invgamma, zipfR, rms
Description:Dose Titration Algorithm Tuning (DTAT) is a methodologic framework allowing dose individualization to be conceived as a continuous learning process that begins in early-phase clinical trials and continues throughout drug development, on into clinical practice. This package includes code that researchers may use to reproduce or extend key results of the DTAT research programme, plus tools for trialists to design and simulate a '3+3/PC' dose-finding study. Please see Norris (2017a) <doi:10.12688/f1000research.10624.3> and Norris (2017c) <doi:10.1101/240846>.
URL:https://precisionmethods.guru/
License:MIT + file LICENSE
RoxygenNote:7.3.2
VignetteBuilder:knitr, rmarkdown
Encoding:UTF-8
NeedsCompilation:no
Author:David C. Norris [aut, cre]
Packaged:2025-07-24 06:23:21 UTC; david
Repository:CRAN
Date/Publication:2025-07-24 13:10:13 UTC

Dose Titration Algorithm Tuning: a Framework for Dose Individualizationin Drug Development

Description

Dose Titration Algorithm Tuning (DTAT) is a methodologic frameworkallowing dose individualization to be conceived as a continuous learning processthat begins in early-phase clinical trials and continues throughout drug development,on into clinical practice.This package includes code that researchers may use to reproduce or extend key resultsof the DTAT research programme, plus tools for trialists to design and simulate a'3+3/PC' dose-finding study. Please see Norris (2017a)doi:10.12688/f1000research.10624.3and Norris (2017c)doi:10.1101/240846.

Author(s)

David C. Norris

References

  1. Norris DC. Dose Titration Algorithm Tuning (DTAT) should supersede‘the’ Maximum Tolerated Dose (MTD) in oncology dose-finding trials.F1000Research. 2017;6:112.doi:10.12688/f1000research.10624.3.https://f1000research.com/articles/6-112/v3

  2. Norris DC. Costing ‘the’ MTD.bioRxiv. August 2017:150821.doi:10.1101/150821.https://www.biorxiv.org/content/10.1101/150821v3

  3. Norris DC. Precautionary Coherence Unravels Dose Escalation Designs.bioRxiv. December 2017:240846.doi:10.1101/240846.https://www.biorxiv.org/content/10.1101/240846v1

  4. Norris DC. One-size-fits-all dosing in oncology wastes money, innovationand lives.Drug Discov Today. 2018;23(1):4-6.doi:10.1016/j.drudis.2017.11.008.https://precisionmethods.guru/DTAT/Norris%20(2018)%20One-size-fits-all%20dosing%20in%20oncology%20wastes%20money,%20innovation%20and%20lives.pdf

  5. Norris DC. Costing ‘the’ MTD ... in 2-D.bioRxiv. July 2018:370817.doi:10.1101/370817.https://www.biorxiv.org/content/10.1101/370817v1

See Also

Useful links:


An S4 class for simulating dose-titration study designs

Description

An S4 class for simulating dose-titration study designs

Slots

doses

A numeric vector of prospectively-determined discrete doses totrial.

units

A string indicating dose units, e.g."mg/kg".

MTDi

A numeric vector of optimal doses for simulated studyparticipants. Optionally a call to an⁠r<distribution>(...)⁠ function whichmay be parsed to calculate themtd_quantiles slot.

mtd_quantiles

A numeric vector of quantiles of the distribution fromwhich the MTDi slot was simulated. Intended mainly to support visualizationof this distribution, e.g. as an transparent overlay on the dose-survivalplot. NULL in caseMTDi is provided verbatim.

fractol

A numeric vector of probabilities for the simulated MTDi slot.Intended mainly to support visualization, e.g. plotting of 'MTD pointers'on the interactive dose-survival plot.

data

A data.frame with columns:

  • id Participant identifier

  • period DLT assessment period, numbered consecutively from 1

  • dose Dose level, numbered consecutively starting from 1

  • dlt A logical indicator: did this this participant experiencea DLT during this period?

stop_esc

integer Period in which ‘stop rule’ was triggered

ds_conf_level

numeric Confidence level for confidence band aroundKaplan-Meier estimate of the dose-survival curve.

dose_drop_threshold

numeric Threshold for triggering the ‘bypass rule’.

stop_esc_under

numeric Threshold for triggering the ‘stop rule’.

undo_esc_under

numeric Threshold for triggering the ‘rollback rule’.


POMP PK/PD model for docetaxel, combining Onoue et al (2016) with Friberg etal (2002)

Description

This function produces a POMP model combining docetaxel pharmacokinetics(PK) drawn from Table 2 of Onoue et al (2016) with myelosuppression dynamicsdrawn from Friberg et al (2002). This model enables simulation ofneutrophil-guided dose titration of docetaxel, as done in Norris (2017).

Usage

Onoue.Friberg(  N,  cycle.length.days = 21,  data = data.frame(time = c(seq(0, 1.95, 0.05), seq(2, cycle.length.days * 24, 1)), y =    NA),  delta.t = 0.1)

Arguments

N

Size of simulated population.

cycle.length.days

Duration (in days) of chemotherapy cycle to besimulated.

data

Passed through as thedata argument of thepompconstructor.

delta.t

Time-step (in hours) of pomp'seuler plug-in.

Value

No value is returned; rather, the function sets global variablesin package environmentDTAT::sim.

Author(s)

David C. Norris

References

  1. Onoue H, Yano I, Tanaka A, Itohara K, Hanai A, Ishiguro H, et al.Significant effect of age on docetaxel pharmacokinetics in Japanesefemale breast cancer patients by using the population modeling approach.Eur J Clin Pharmacol. 2016 Jun;72(6):703-10.doi:10.1007/s00228-016-2031-3.

  2. Friberg LE, Henningsson A, Maas H, Nguyen L, Karlsson MO. Model ofchemotherapy-induced myelosuppression with parameter consistency acrossdrugs.J Clin Oncol. 2002 Dec 15;20(24):4713-21.doi:10.1200/JCO.2002.02.140.

  3. Norris DC. Dose Titration Algorithm Tuning (DTAT) should supersede‘the’ Maximum Tolerated Dose (MTD) in oncology dose-finding trials.F1000Research. 2017;6:112. doi:10.12688/f1000research.10624.3.https://f1000research.com/articles/6-112/v3

See Also

pomp,sim

Examples

# Reproduce the sim$pkpd model and sim$pop population from reference #3:library(pomp)Onoue.Friberg(N=25)sim$pop # NB: this differs from pop of original paper...# Whereas the present version of Onoue.Friberg() draws simulated populations# using pomp::rprior(), to reproduce the original F1000Research paper [3] we# re-draw sim$pop as originally & prosaically done (see https://osf.io/vwnqz/):set.seed(2016)N <- 25dtx.mm <- 0.808 # molar mass (mg/µM) of docetaxelsim$pop$Circ0 <- rlnorm(N, meanlog=log(5050), sdlog=0.42) # units=cells/mm^3sim$pop$MTT <- rlnorm(N, meanlog=log(89.3), sdlog=0.16)  # mean transit timesim$pop$gamma <- rlnorm(N, meanlog=log(0.163), sdlog=0.039) # feedback factorsim$pop$Emax <- rlnorm(N, meanlog=log(83.9), sdlog=0.33)sim$pop$EC50 <- rlnorm(N, meanlog=log(7.17*dtx.mm), sdlog=0.50)# PK params from 2-compartment docetaxel model of Onoue et al (2016)sim$pop$CL <- rlnorm(N, meanlog=log(32.6), sdlog=0.295)sim$pop$Q  <- rlnorm(N, meanlog=log(5.34), sdlog=0.551)sim$pop$Vc <- rlnorm(N, meanlog=log(5.77), sdlog=0.1) # Onoue gives no CV% for V1sim$pop$Vp <- rlnorm(N, meanlog=log(11.0), sdlog=0.598) # Called 'V2' in Onouesim$pop$kTR=4/sim$pop$MTT# Now we run the sim$pkpd model, separately for each of N simultated individuals:allout <- data.frame() # accumulator for N individual ODE solutionsfor (id in 1:sim$N) {  out <- trajectory(sim$pkpd,                    params=c(sim$pop[sim$pop$id==id, -which(names(sim$pop) %in% c('id','MTT'))]                             , sigma=0.05, dose=100, duration=1),                    format="data.frame")  # drop 'traj' and shift 'time' to first column  out <- out[,c('time',setdiff(colnames(out),c('time','traj')))]  out$id <- paste("id",id,sep="")  allout <- rbind(allout, out)}library(Hmisc)allout <- upData(allout                 , id = ordered(id, levels=paste("id",1:sim$N,sep=""))                 , units=c(Prol="cells/mm^3", Tx.1="cells/mm^3",                           Tx.2="cells/mm^3", Tx.3="cells/mm^3",                           Circ="cells/mm^3",                           Cc="ng/mL", Cp="ng/mL",                           time="hours"), print=FALSE)library(tidyr)cout <- gather(allout, key="Series", value="Concentration", Cc, Cp, factor_key = TRUE)label(cout$Concentration) <- "Drug Concentration"# Figure 1 from reference [3]:library(RColorBrewer)xYplot(Concentration ~ time | id, group=Series       , data=cout, subset=time<6       , layout=c(5,NA)       , type='l', as.table=TRUE       , label.curves=FALSE       , par.settings=list(superpose.line=list(lwd=2,col=brewer.pal(4,"PRGn")[c(1,4)]))       , scales=list(y=list(log=TRUE, lim=c(10^-3,10^1)))       , auto.key=list(points=FALSE, lines=TRUE, columns=2))mout <- gather(allout, key="Series", value="ANC", Prol, Tx.1, Tx.2, Tx.3, Circ, factor_key = TRUE)mout <- upData(mout               , time = time/24               , units = c(time="days")               , print = FALSE)# Figure 3 from citation [3]:xYplot(ANC ~ time | id, group=Series       , data=mout       , layout=c(5,5)       , type='l', as.table=TRUE       , label.curves=FALSE       , par.settings=list(superpose.line=list(lwd=2,col=brewer.pal(11,"RdYlBu")[c(1,3,4,8,10)]))       , scales=list(y=list(log=TRUE, lim=c(100,15000), at=c(200, 500, 1000, 2000, 5000, 10000)))       , auto.key=list(points=FALSE, lines=TRUE, columns=5))

Convert a DE object to JSON

Description

Convert a DE object to JSON

Usage

## S4 method for signature 'DE'as_d3_data(x, ...)

Arguments

x

An object of classDE

...

Unused.


Simulated ‘3+3/PC’ dose-titration study from bioRxiv paper no. 240846

Description

This is a length-10 list of data frames, summarizing the simulated trialfrom this paper, at the end of periods 1, 2, ..., 10. This structure reflectsan awkward S3 implementation that package DTAT v0.3 reimplemented using S4.This data set is retained to support regression tests.

Format

A length-10 list of data frames, each with the following columns:

id

Participant identifier

period

DLT assessment period, numbered consecutively from 1

dose

Dose level, numbered consecutively starting from 1

dlt

A logical indicator: did this this participant experiencea DLT during this period?

Details

Astop.esc attribute is attached to data frames in this list,indicating when escalation stopped during the simulated trial.

References

Norris DC. Precautionary Coherence Unravels Dose EscalationDesigns.bioRxiv. December 2017:240846.doi:10.1101/240846.https://www.biorxiv.org/content/10.1101/240846v1

Examples

data(de.bioRxiv.240846)# Demonstrate that the new S4 3+3/PC implementation reproduces the# simulated trial from the paper:set.seed(2017)CV <- 0.7; mean_mtd <- 1.0shape <- CV^-2; scale <- mean_mtd/shapetrial <- new("DE", doses=0.25 * 1.4^(0:6),             MTDi=rgamma(24, shape=shape, scale=scale),             units="mg")trial <- titration(trial, periods=10)stopifnot(all(trial@data == de.bioRxiv.240846[[10]]))stopifnot(trial@stop_esc == attr(de.bioRxiv.240846[[10]],'stop.esc'))

Calculate a dose-survival curve from a dose titration study, adding aconfidence band

Description

The 'dose-survival curve' is nothing other than an empirical cumulativedistribution for MTDi in the sampled population. The term 'survival' issuggested in part by our application of the Kaplan-Meier estimator tointerval-censored toxicity information.

Usage

dose.survfit(de, method = "rothman", avoid.degeneracy = TRUE, conf.level = 0.8)

Arguments

de

A dose titration experiment like thedata slot of classDE

method

The method to be used bykm.ci whencalculating CI

avoid.degeneracy

When TRUE, this parameter directs the function tointroduce artificial events into the dose titration experiment, to avoiddegeneracies at the lower and upper ends of the dose-survival curve.

conf.level

Confidence level for KM confidence band.

Details

TODO: Describe details of degeneracy avoidance, once these have stabilized.

Value

An object of classsurvfit.

Author(s)

David C. Norris

See Also

dose.survival,km.ci

Examples

CV <- 0.7; mean_mtd <- 1.0shape <- CV^-2; scale <- mean_mtd/shapetrial <- new("DE", doses=0.25 * 1.4^(0:6),             MTDi=rgamma(24, shape=shape, scale=scale),             units="mg")trial <- titration(trial, periods=10)sf <- dose.survfit(trial@data)summary(sf)

Extract interval-censored dose tolerance data from a dose titration study

Description

Constructs aSurv object from a dose-escalationexperiment, using interval-censoring constructs oftype='interval2'.

Usage

dose.survival(de)

Arguments

de

A data frame describing a dose-titration study

Value

ASurv object of type='interval2'

Author(s)

David C. Norris

See Also

dose.survfit

Examples

CV <- 0.7; mean_mtd <- 1.0shape <- CV^-2; scale <- mean_mtd/shapetrial <- new("DE", doses=0.25 * 1.4^(0:6),             MTDi=rgamma(24, shape=shape, scale=scale),             units="mg")trial <- titration(trial, periods=10)dose.survival(trial@data)

Extract the dose-survival curve, with its upper and lower confidence bandlimits

Description

This utility function simply makes the results ofdose.survfitavailable in the convenient form of a list.

Usage

ds.curve(de, ...)

Arguments

de

A data frame describing a dose-titration study.

...

Passed through to functiondose.survfit

Value

A list with componentssurv,upper andlower,each containing a vector that can be indexed by dose level.

Author(s)

David C. Norris

See Also

dose.survfit

Examples

CV <- 0.7; mean_mtd <- 1.0shape <- CV^-2; scale <- mean_mtd/shapetrial <- new("DE", doses=0.25 * 1.4^(0:6),             MTDi=rgamma(24, shape=shape, scale=scale),             units="mg")trial <- titration(trial, periods=10)ds.curve(trial@data)

Precomputed neutrophil-guided chemotherapy dose titration for 1000 simulatedsubjects.

Description

This dataset is provided to support fast reproduction of a forthcomingpharmacoeconomic paper that includes examination of the empiricaldistribution of MTDi in N=1000 simulated subjects.

Format

A data frame showing end-of-cycle state of neutrophil-guided dosetitration for 1000 simulated subjects, across 10 cycles of chemotherapy.

cycle

Cycle number 1..10

id

Subject identifiers; an ordered factor with levelsid1 < ... <id1000

Cc

Central-compartment drug concentration

Cp

Peripheral-compartment drug concentration

Prol

Progenitor cells in proliferating compartment ofFriberg et al. (2002) model

Tx.1

Transit compartment 1

Tx.2

Transit compartment 1

Tx.3

Transit compartment 1

Circ

Concentration (cells/mm^3) of circulating neutrophils

dose

Dose of 1-hour infusion administered this cycle

CircMin

Neutrophil nadir (cells/mm^3)

tNadir

Time (days) of neutrophil nadir

scaled.dose

Fourth root of dose

time

Time (weeks) of dose administration

Details

Running the examples interactively, you can verify the reproducibility ofthis dataset. (That demo is included in adonttest block to spare theCRAN servers.)

References

  1. Norris DC. Dose Titration Algorithm Tuning (DTAT) shouldsupersede ‘the’ Maximum Tolerated Dose (MTD) in oncology dose-findingtrials.F1000Research. 2017;6:112.doi:10.12688/f1000research.10624.3.https://f1000research.com/articles/6-112/v3

  2. Norris DC. Costing ‘the’ MTD.bioRxiv. August 2017:150821.doi:10.1101/150821.https://www.biorxiv.org/content/10.1101/150821v3

Examples

data(dtat1000)# 1. Extract the N final doses, assuming convergence by the tenth courseMTD_i <- with(dtat1000, dose[time==27])MTD_i <- MTD_i[MTD_i < 5000] # Exclude few outliers# 2. Do a kernel density plotlibrary(Hmisc)library(latticeExtra)hist <- histogram(~MTD_i, breaks=c(0,100,200,300,400,600,900,1500,2500,4000,5000)                  , xlab=expression(MTD[i]))approx <- data.frame(mtd_i=seq(0, 5000, 10))approx <- upData(approx,                 gamma = dgamma(mtd_i, shape=1.75, scale=200))dist <- xyplot(gamma ~ mtd_i, data=approx, type='l', col='black', lwd=2)library(grid)hist + distgrid.text(expression(MTD[i] %~%                     paste("Gamma(", alpha==1.75, ", ", beta==1/200,")"))         , x=unit(0.5,"npc")         , y=unit(0.75,"npc")         )## A very long repro, which a user of this package may well wish to verify## by running the examples interactively, although it takes many minutes## to compute.  (Enclosed in a dontest block to avoid overburdening CRAN.)# Demonstrate close reproduction of original titration (the titration takes many minutes!)set.seed(2016)library(pomp)Onoue.Friberg(N=1000)# This titration may take an hour to run ...chemo <- titrate(doserange = c(50, 3000),                 dta=newton.raphson(dose1 = 100,                                    omega = 0.75,                                    slope1 = -2.0,                                    slopeU = -0.2))dtat1k <- upData(chemo$course                , time = 3*(cycle-1)                , labels = c(time="Time")                , units = c(time="weeks")                , print = FALSE)c10dose1k <- subset(dtat1k, cycle==10)$scaled.dosec10dose1000 <- subset(dtat1000, cycle==10)$scaled.dosestopifnot(0.999 < cor(c10dose1k, c10dose1000))

A dose titration algorithm (DTA) 'factory' based on the Newton-Raphsonheuristic

Description

This higher-order ('factory') function produces a simple dose titrationalgorithm for neutrophil-guided chemotherapy dosing.

Usage

newton.raphson(dose1, omega, slope1, slopeU)

Arguments

dose1

The starting dose for titration

omega

A relaxation parameter used to moderate dose increments

slope1

Dose-response slope assumed prior to 2nd measured neutrophilnadir

slopeU

Upper bound imposed on slope estimates

Details

This function manifests the core concept of Dose Titration Algorithm Tuningby delivering an objectively realized 'DTA'. It therefore enables a varietyof DTAs to be implemented and compared.

Value

A dose titration function that advises dose for next cycle ofchemotherapy.

Author(s)

David C. Norris

See Also

titrate


Plot a DE object as an interactive htmlwidget

Description

Plot a DE object as an interactive htmlwidget

Usage

## S4 method for signature 'DE,missing'plot(x, y, ..., devtree = FALSE)

Arguments

x

An object of classDE

y

Unused; included for S4 generic consistency

...

Passed tor2d3, enabling caller to (e.g.) theoverride the defaultviewer = "internal".

devtree

Logical indicator used to select local package dir


Objects exported from other packages

Description

These objects are imported from other packages.Follow the links below to see their documentation.


Run Shiny apps included in package DTAT

Description

Run Shiny apps included in package DTAT

Usage

runDTATapp(app)

Arguments

app

Character vector of length 1. Name of app to run.

Value

Invoked for side effect. Runs the named Shiny app.

Examples

if(interactive()){runDTATapp("Sim33PC")runDTATapp("TheCost")}

Power-law scaling for doses

Description

Implement an inverse power-law scaling for drug dose.

Usage

scaled(dose, a = 4)

Arguments

dose

A numeric vector of doses

a

A numeric exponent for power-law rescaling

Value

A rescaled vector of doses

Author(s)

David C. Norris


A seq method supporting custom-scaled plot axes.

Description

This provides aseq method for classfunction, supporting anatural axis scaling idiom.

Usage

## S3 method for class ''function''seq(scalefun, from, to, length.out, digits = NULL, ...)

Arguments

scalefun

A numeric function that will be invoked componentwise, andso need not be vectorized)

from,to

The starting and ending values of the sequence returned

length.out

Desired length of the sequence

digits

If non-NULL, returned value is rounded accordingly

...

Unused; included for S3 generic/method consistency.

Value

A numeric vector that (not considering the effect of any roundingapplied), becomes an arithmetic sequence after application ofscalefun to it. The initial and final elements of that vector arefrom andto.

Author(s)

David C. Norris

Examples

# Provide evenly-spaced length-6 sequence from 100 to 1000,# evenly spaced on a fourth-root scale:seq(function(dose, a=4.0) dose^(1/a), from=100, to=1000, length.out=6, digits=0)

Environment for simulation global variables.

Description

To simplify the code of package DTAT, as well as client tasks, this exportedenvironment contains a handful of global variables useful for thesimulations.

Details

Global variables maintained within environmentsim are:

  1. pkpd: The population PK/PD model to be simulated.

  2. pop: A sample drawn from the population model.

  3. N: Restricts simulation to firstN subjects inpop.

  4. params.default: Default parameters.

Examples

# Even when nrow(pop) is large, one may easily restrict# time-consuming simulations to pop[1:N,], as follows:sim$N <- 25# Now perform simulation work## Not run: titrate(...)## End(Not run)

Perform neutrophil-guided dose titration of a chemotherapy drug.

Description

This is included in package DTAT mainly for archival purposes, with the aimto document a reproduction of Figure 5 from the 2017F1000Researchpaper (referenced below), using a clearer and more general software designthan is found in the online code supplement available at https://osf.io/vwnqz/.

Usage

titrate(draw.days = NULL, Ncycles = 10, doserange = c(50, 500), dta = NULL)

Arguments

draw.days

Integer days on which ANC is to be measured

Ncycles

Number of chemo cycles through which to simulate titration

doserange

Range of doses to consider

dta

A Dose Titration Algorithm (DTA) to drive the titration

Value

A list with 2 components:

course

A data frame containing cycle-wise measuresof each id's titration course

anc.ts

A data frame detailing high-frequency ANC measures for each id

Author(s)

David C. Norris

References

Norris DC. Dose Titration Algorithm Tuning (DTAT) shouldsupersede ‘the’ Maximum Tolerated Dose (MTD) in oncology dose-findingtrials.F1000Research. 2017;6:112. doi:10.12688/f1000research.10624.3.https://f1000research.com/articles/6-112/v3

Examples

if(interactive()){# Reproduce Figure 5 from the F1000Research paper (run time > 10 s).# 1. Set up sim$pop & sim$pkpd by running the repro for Figures 1 & 3:example(topic="Onoue.Friberg", package="DTAT", ask=FALSE)# 2. Do the neutrophil-nadir-guided dose titration:chemo <- titrate(doserange = c(50, 3000),                 dta=newton.raphson(dose1 = 50,                                    omega = 0.75,                                    slope1 = -2.0,                                    slopeU = -0.2)                 )library(latticeExtra)newton <- chemo$coursenew.ts <- chemo$anc.tsanc.tics <- c(200,500,1500,4000,10000)right <- xYplot(ANC ~ time | id, data=new.ts                , as.table=TRUE, type="l"                , layout=c(5,5)                , scales=list(y=list(log=TRUE, lim=c(100,1.5e4)                                     , at=anc.tics                                     , lab=as.character(anc.tics)),                              x=list(at=seq(0,30,3))))newton <- upData(newton                 , time = 3*(cycle-1)                 , labels = c(time="Time")                 , units = c(time="weeks")                 , print = FALSE)dose.tics <- c(50, 200, 600, 1500, 3000)left <- xYplot(scaled.dose ~ time | id, data=newton               , as.table=TRUE, type='p', pch='+', cex=1.5               , layout=c(5,5)               , scales=list(y=list(lim=DTAT:::scaled(c(30,3200))                                    , at=DTAT:::scaled(dose.tics)                                    , lab=as.character(dose.tics)),                             x=list(lim=c(-1,31)                                    , at=seq(0,30,3)                                    , lab=c('0','','6','','12','','18','','24','','30'))))update(doubleYScale(left, right, add.ylab2=TRUE)       , par.settings = simpleTheme(col=brewer.pal(4,"PRGn")[c(4,1)]))}

Simulate a ‘3+3/PC’ dose-titration trial

Description

Simulate a ‘3+3/PC’ dose-titration trial

Usage

titration(x, periods, ...)## S4 method for signature 'DE,numeric'titration(x, periods, ...)

Arguments

x

An object of S4 classDE

periods

The number of DLT assessment periods to titrate over.Should be a positive integer.

...

May be used to passverbatim = 'TRUE' to internalstep_time method.

References

Norris DC. Precautionary Coherence Unravels Dose Escalation Designs.bioRxiv. December 2017:240846. doi:10.1101/240846.https://www.biorxiv.org/content/10.1101/240846v1


[8]ページ先頭

©2009-2025 Movatter.jp