Movatterモバイル変換


[0]ホーム

URL:


ssr: Semi-Supervised Regression Methods

An implementation of semi-supervised regression methods including self-learning and co-training by committee based on Hady, M. F. A., Schwenker, F., & Palm, G. (2009) <doi:10.1007/978-3-642-04274-4_13>. Users can define which set of regressors to use as base models from the 'caret' package, other packages, or custom functions.

Version:0.1.1
Depends:R (≥ 3.6.0)
Imports:caret,e1071
Suggests:knitr,rmarkdown,tgp
Published:2019-09-02
DOI:10.32614/CRAN.package.ssr
Author:Enrique Garcia-CejaORCID iD [aut, cre]
Maintainer:Enrique Garcia-Ceja <e.g.mx at ieee.org>
BugReports:https://github.com/enriquegit/ssr/issues
License:GPL-3
URL:https://github.com/enriquegit/ssr
NeedsCompilation:no
Materials:README,NEWS
CRAN checks:ssr results

Documentation:

Reference manual:ssr.html ,ssr.pdf
Vignettes:Introduction to the ssr package (source,R code)

Downloads:

Package source: ssr_0.1.1.tar.gz
Windows binaries: r-devel:ssr_0.1.1.zip, r-release:ssr_0.1.1.zip, r-oldrel:ssr_0.1.1.zip
macOS binaries: r-release (arm64):ssr_0.1.1.tgz, r-oldrel (arm64):ssr_0.1.1.tgz, r-release (x86_64):ssr_0.1.1.tgz, r-oldrel (x86_64):ssr_0.1.1.tgz
Old sources: ssr archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=ssrto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp