Movatterモバイル変換


[0]ホーム

URL:


mglasso: Multiscale Graphical Lasso

Inference of Multiscale graphical models with neighborhood selection approach. The method is based on solving a convex optimization problem combining a Lasso and fused-group Lasso penalties. This allows to infer simultaneously a conditional independence graph and a clustering partition. The optimization is based on the Continuation with Nesterov smoothing in a Shrinkage-Thresholding Algorithm solver (Hadj-Selem et al. 2018) <doi:10.1109/TMI.2018.2829802> implemented in python.

Version:0.1.2
Imports:corpcor,ggplot2,ggrepel,gridExtra,Matrix, methods,R.utils,reticulate (≥ 1.25),rstudioapi
Suggests:knitr,mvtnorm,rmarkdown,testthat (≥ 3.0.0)
Published:2022-09-08
DOI:10.32614/CRAN.package.mglasso
Author:Edmond Sanou [aut, cre], Tung Le [ctb], Christophe Ambroise [ths], Geneviève Robin [ths]
Maintainer:Edmond Sanou <doedmond.sanou at univ-evry.fr>
License:MIT + fileLICENSE
URL:https://desanou.github.io/mglasso/
NeedsCompilation:no
Materials:NEWS
CRAN checks:mglasso results

Documentation:

Reference manual:mglasso.html ,mglasso.pdf
Vignettes:Multiscale GLasso (source,R code)

Downloads:

Package source: mglasso_0.1.2.tar.gz
Windows binaries: r-devel:mglasso_0.1.2.zip, r-release:mglasso_0.1.2.zip, r-oldrel:mglasso_0.1.2.zip
macOS binaries: r-release (arm64):mglasso_0.1.2.tgz, r-oldrel (arm64):mglasso_0.1.2.tgz, r-release (x86_64):mglasso_0.1.2.tgz, r-oldrel (x86_64):mglasso_0.1.2.tgz
Old sources: mglasso archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=mglassoto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp