Movatterモバイル変換


[0]ホーム

URL:


WLogit: Variable Selection in High-Dimensional Logistic RegressionModels using a Whitening Approach

It proposes a novel variable selection approach in classification problem that takes into account the correlations that may exist between the predictors of the design matrix in a high-dimensional logistic model. Our approach consists in rewriting the initial high-dimensional logistic model to remove the correlation between the predictors and in applying the generalized Lasso criterion.

Version:2.1
Depends:R (≥ 3.5.0)
Imports:cvCovEst,genlasso,tibble,MASS,ggplot2,Matrix,glmnet,corpcor
Suggests:knitr
Published:2023-07-17
DOI:10.32614/CRAN.package.WLogit
Author:Wencan Zhu
Maintainer:Wencan Zhu <wencan.zhu at yahoo.com>
License:GPL-2
NeedsCompilation:no
CRAN checks:WLogit results

Documentation:

Reference manual:WLogit.html ,WLogit.pdf
Vignettes:WLogit package (source,R code)

Downloads:

Package source: WLogit_2.1.tar.gz
Windows binaries: r-devel:WLogit_2.1.zip, r-release:WLogit_2.1.zip, r-oldrel:WLogit_2.1.zip
macOS binaries: r-release (arm64):WLogit_2.1.tgz, r-oldrel (arm64):WLogit_2.1.tgz, r-release (x86_64):WLogit_2.1.tgz, r-oldrel (x86_64):WLogit_2.1.tgz
Old sources: WLogit archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=WLogitto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp