Movatterモバイル変換


[0]ホーム

URL:


SILGGM: Statistical Inference of Large-Scale Gaussian Graphical Model inGene Networks

Provides a general framework to perform statistical inference of each gene pair and global inference of whole-scale gene pairs in gene networks using the well known Gaussian graphical model (GGM) in a time-efficient manner. We focus on the high-dimensional settings where p (the number of genes) is allowed to be far larger than n (the number of subjects). Four main approaches are supported in this package: (1) the bivariate nodewise scaled Lasso (Ren et al (2015) <doi:10.1214/14-AOS1286>) (2) the de-sparsified nodewise scaled Lasso (Jankova and van de Geer (2017) <doi:10.1007/s11749-016-0503-5>) (3) the de-sparsified graphical Lasso (Jankova and van de Geer (2015) <doi:10.1214/15-EJS1031>) (4) the GGM estimation with false discovery rate control (FDR) using scaled Lasso or Lasso (Liu (2013) <doi:10.1214/13-AOS1169>). Windows users should install 'Rtools' before the installation of this package.

Version:1.0.0
Depends:R (≥ 3.0.0),Rcpp
Imports:glasso,MASS,reshape, utils
LinkingTo:Rcpp
Published:2017-10-16
DOI:10.32614/CRAN.package.SILGGM
Author:Rong Zhang, Zhao Ren and Wei Chen
Maintainer:Rong Zhang <roz16 at pitt.edu>
License:GPL-2 |GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation:yes
CRAN checks:SILGGM results

Documentation:

Reference manual:SILGGM.html ,SILGGM.pdf

Downloads:

Package source: SILGGM_1.0.0.tar.gz
Windows binaries: r-devel:SILGGM_1.0.0.zip, r-release:SILGGM_1.0.0.zip, r-oldrel:SILGGM_1.0.0.zip
macOS binaries: r-release (arm64):SILGGM_1.0.0.tgz, r-oldrel (arm64):SILGGM_1.0.0.tgz, r-release (x86_64):SILGGM_1.0.0.tgz, r-oldrel (x86_64):SILGGM_1.0.0.tgz

Reverse dependencies:

Reverse imports:noisysbmGGM

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=SILGGMto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp