Movatterモバイル変換


[0]ホーム

URL:


PCDimension: Finding the Number of Significant Principal Components

Implements methods to automate the Auer-Gervini graphical Bayesian approach for determining the number of significant principal components. Automation uses clustering, change points, or simple statistical models to distinguish "long" from "short" steps in a graph showing the posterior number of components as a function of a prior parameter. See <doi:10.1101/237883>.

Version:1.1.14
Depends:R (≥ 4.4),ClassDiscovery
Imports:methods, stats, graphics,oompaBase,kernlab,changepoint,cpm
Suggests:MASS,nFactors
Published:2025-04-07
DOI:10.32614/CRAN.package.PCDimension
Author:Min Wang [aut], Kevin R. Coombes [aut, cre]
Maintainer:Kevin R. Coombes <krc at silicovore.com>
License:Apache License (== 2.0)
URL:http://oompa.r-forge.r-project.org/
NeedsCompilation:no
Materials:NEWS
CRAN checks:PCDimension results

Documentation:

Reference manual:PCDimension.html ,PCDimension.pdf
Vignettes:PCDimension (source,R code)

Downloads:

Package source: PCDimension_1.1.14.tar.gz
Windows binaries: r-devel:PCDimension_1.1.14.zip, r-release:PCDimension_1.1.14.zip, r-oldrel:PCDimension_1.1.14.zip
macOS binaries: r-release (arm64):PCDimension_1.1.14.tgz, r-oldrel (arm64):PCDimension_1.1.14.tgz, r-release (x86_64):PCDimension_1.1.14.tgz, r-oldrel (x86_64):PCDimension_1.1.14.tgz
Old sources: PCDimension archive

Reverse dependencies:

Reverse depends:Thresher
Reverse suggests:parameters,RPointCloud

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=PCDimensionto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp