Movatterモバイル変換


[0]ホーム

URL:


graDiEnt: Stochastic Quasi-Gradient Differential Evolution Optimization

An optim-style implementation of the Stochastic Quasi-Gradient Differential Evolution (SQG-DE) optimization algorithm first published by Sala, Baldanzini, and Pierini (2018; <doi:10.1007/978-3-319-72926-8_27>). This optimization algorithm fuses the robustness of the population-based global optimization algorithm "Differential Evolution" with the efficiency of gradient-based optimization. The derivative-free algorithm uses population members to build stochastic gradient estimates, without any additional objective function evaluations. Sala, Baldanzini, and Pierini argue this algorithm is useful for 'difficult optimization problems under a tight function evaluation budget.' This package can run SQG-DE in parallel and sequentially.

Version:1.0.1
Depends:R (≥ 3.5.0)
Imports:stats,doParallel
Published:2022-05-10
DOI:10.32614/CRAN.package.graDiEnt
Author:Brendan Matthew GaldoORCID iD [aut, cre]
Maintainer:Brendan Matthew Galdo <Brendan.m.galdo at gmail.com>
BugReports:https://github.com/bmgaldo/graDiEnt
License:MIT + fileLICENSE
URL:https://github.com/bmgaldo/graDiEnt
NeedsCompilation:no
Materials:README,NEWS
In views:Optimization
CRAN checks:graDiEnt results

Documentation:

Reference manual:graDiEnt.html ,graDiEnt.pdf

Downloads:

Package source: graDiEnt_1.0.1.tar.gz
Windows binaries: r-devel:graDiEnt_1.0.1.zip, r-release:graDiEnt_1.0.1.zip, r-oldrel:graDiEnt_1.0.1.zip
macOS binaries: r-release (arm64):graDiEnt_1.0.1.tgz, r-oldrel (arm64):graDiEnt_1.0.1.tgz, r-release (x86_64):graDiEnt_1.0.1.tgz, r-oldrel (x86_64):graDiEnt_1.0.1.tgz

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=graDiEntto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp