Movatterモバイル変換


[0]ホーム

URL:


xrf: eXtreme RuleFit

An implementation of the RuleFit algorithm as described in Friedman & Popescu (2008) <doi:10.1214/07-AOAS148>. eXtreme Gradient Boosting ('XGBoost') is used to build rules, and 'glmnet' is used to fit a sparse linear model on the raw and rule features. The result is a model that learns similarly to a tree ensemble, while often offering improved interpretability and achieving improved scoring runtime in live applications. Several algorithms for reducing rule complexity are provided, most notably hyperrectangle de-overlapping. All algorithms scale to several million rows and support sparse representations to handle tens of thousands of dimensions.

Version:0.3.0
Depends:R (≥ 4.3.0)
Imports:cli,dplyr,fuzzyjoin,glmnet (≥ 3.0),Matrix, methods,rlang,xgboost (≥ 3.1.2.1)
Suggests:covr,testthat (≥ 3.0.0)
Published:2025-12-04
DOI:10.32614/CRAN.package.xrf
Author:Karl Holub [aut, cre]
Maintainer:Karl Holub <karljholub at gmail.com>
BugReports:https://github.com/holub008/xrf/issues
License:MIT + fileLICENSE
URL:https://github.com/holub008/xrf
NeedsCompilation:no
Materials:README
CRAN checks:xrf results

Documentation:

Reference manual:xrf.html ,xrf.pdf

Downloads:

Package source: xrf_0.3.0.tar.gz
Windows binaries: r-devel:xrf_0.3.0.zip, r-release:xrf_0.3.0.zip, r-oldrel:xrf_0.3.0.zip
macOS binaries: r-release (arm64):xrf_0.3.0.tgz, r-oldrel (arm64):xrf_0.3.0.tgz, r-release (x86_64):xrf_0.3.0.tgz, r-oldrel (x86_64):xrf_0.3.0.tgz
Old sources: xrf archive

Reverse dependencies:

Reverse suggests:butcher,rules

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=xrfto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp