Movatterモバイル変換


[0]ホーム

URL:


fairml: Fair Models in Machine Learning

Fair machine learning regression models which take sensitive attributes into account in model estimation. Currently implementing Komiyama et al. (2018) <http://proceedings.mlr.press/v80/komiyama18a/komiyama18a.pdf>, Zafar et al. (2019) <https://www.jmlr.org/papers/volume20/18-262/18-262.pdf> and my own approach from Scutari, Panero and Proissl (2022) <doi:10.1007/s11222-022-10143-w> that uses ridge regression to enforce fairness.

Version:0.9
Depends:R (≥ 3.5.0)
Imports:methods,glmnet
Suggests:lattice,gridExtra, parallel,cccp,CVXR,survival
Published:2025-04-29
DOI:10.32614/CRAN.package.fairml
Author:Marco Scutari [aut, cre]
Maintainer:Marco Scutari <scutari at bnlearn.com>
License:MIT + fileLICENSE
NeedsCompilation:no
Materials:ChangeLog
CRAN checks:fairml results

Documentation:

Reference manual:fairml.html ,fairml.pdf

Downloads:

Package source: fairml_0.9.tar.gz
Windows binaries: r-devel:fairml_0.9.zip, r-release:fairml_0.9.zip, r-oldrel:fairml_0.9.zip
macOS binaries: r-release (arm64):fairml_0.9.tgz, r-oldrel (arm64):fairml_0.9.tgz, r-release (x86_64):fairml_0.9.tgz, r-oldrel (x86_64):fairml_0.9.tgz
Old sources: fairml archive

Reverse dependencies:

Reverse suggests:classmap,mlr3fairness

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=fairmlto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp