An application ofhsar(), based on rel data, will beillustrated. The design of the weight matrices needed and the randomeffect design matrix will be explained.
We start by loading the libraries that will be used.
library(sf)library(spdep)library(tidyverse)## ── Attaching core tidyverse packages ─────────────────────────────────────── tidyverse 2.0.0 ──## ✔ dplyr 1.1.4 ✔ readr 2.1.5## ✔ forcats 1.0.0 ✔ stringr 1.5.1## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1## ✔ purrr 1.0.2## ── Conflicts ───────────────────────────────────────────────────────── tidyverse_conflicts() ──## ✖ tidyr::expand() masks Matrix::expand()## ✖ dplyr::filter() masks stats::filter()## ✖ dplyr::lag() masks stats::lag()## ✖ tidyr::pack() masks Matrix::pack()## ✖ tidyr::unpack() masks Matrix::unpack()## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errorslibrary(HSAR)At the higher level, we have the seven departments of themunicipality of Athens and at the lower level we have the point data ofthe properties.
data(depmunic)data(properties)plot(st_geometry(depmunic),col =sf.colors(12,categorical =TRUE),border ='grey')plot(st_geometry(properties),add=TRUE,col="red",pch=16,cex=0.6)The characteristics that come with the areal data are the id of thedepartment, the number of airbnb properties, the number of museums, thepopulation, the number of citizens with origin a non european unioncountry, the area of the green space (m^2) and the area of the polygon(km^2).
names(depmunic)## [1] "num_dep" "airbnb" "museums" "population" "pop_rest" "greensp" "area"## [8] "geometry"depmunic$pop_rest## [1] 8202 5009 2735 4167 5099 16531 8017The characteristics of the properties are the size (m^2), the askingprice (euros), the price per square meter, the age (years) and theshortest distance to metro/train station (m).
names(properties)## [1] "id" "size" "price" "prpsqm" "age" "dist_metro" "geometry"hist(properties$age,xlab ="Age",main="Age of the properties")Now we are going to create two more variables at the higher,municipality department, level. The first one is the population densityper 10k citizens, and the second one is the percentage of non EUcitizens.
depmunic$popdens<- depmunic$population/ (10000*depmunic$area)depmunic$foreigners<-100* depmunic$pop_rest/ depmunic$populationThe next step is to create the model data that are going to use inthe hsar model. For that, we need for each property (lower data), thedata from the relevant department(higher level).
So now, we know each property, in which department resides and thecoresponding data for that polygon. We also need that data in sortingorder.
In order to run the model we need to create the effect design matrix(Delta), the weight matrix for the high-level - polygon data (M), andthe weight matrix for the lower level - point data (W).
In order to define the random effect matrix, we start with estimatingthe number of properties in each municipality department
and by geting the total number of municipality departments (7), wedefine a vector with the number of municipality department that eachproperty belongs
We then define the random effect matrix (Delta) wich has a dimensionof 1000x7
n<-nrow(properties)Delta<-matrix(0,nrow=n,ncol=Utotal)for(iin1:Utotal) { Delta[Uid==i,i]<-1}Delta<-as(Delta,"dgCMatrix")Now we estimate the spatial weight matrix at the higher level whichin our case is the municipality departments (polygons). So we start withpoly2nb which constructs the neighbours list for polygons and then withnb2mat we generate the weight matrix for the neighbours list previouslycreated. Then we transform the weight matrix in a sparse matrixformat.
to have a closer look at M , we can visualize it
plot(st_geometry(depmunic),border ='grey')plot(st_centroid(depmunic),add =TRUE)## Warning: st_centroid assumes attributes are constant over geometries## Warning in plot.sf(st_centroid(depmunic), add = TRUE): ignoring all but the first attributeplot(nb.list,st_centroid(depmunic),add =TRUE)## Warning: st_centroid assumes attributes are constant over geometriesSimilarly, we create the spatial weight matrix at the lower level ofproperties (point data). So we create the neighbour list at a distanceof 1300 meters
and the weights matrix W as follows
For the W matrix, we can check the neighbours statistics
So, having ready the matrices Delta, M and W, we wun thehsar() function
res.formula<- prpsqm~ size+ age+ greensp+ population+ museums+ airbnbres<-hsar(res.formula,data=model.data,W=W,M=M,Delta=Delta,burnin=500,Nsim=1000)## Warning in spdep::mat2listw(W): style is M (missing); style should be set to a valid value## Warning in sn2listw(df, style = style, zero.policy = zero.policy, from_mat2listw = TRUE):## style is M (missing); style should be set to a valid value## Warning in spdep::mat2listw(W): style is M (missing); style should be set to a valid value## Warning in sn2listw(df, style = style, zero.policy = zero.policy, from_mat2listw = TRUE):## style is M (missing); style should be set to a valid valuesummary(res)#### Call:## hsar(formula = res.formula, data = model.data, W = W, M = M,## Delta = Delta, burnin = 500, Nsim = 1000)## Type: hsar#### Coefficients:## Mean SD## (Intercept) 1.880468e+03 9.835447e+00## size 4.298802e+00 5.112041e-01## age -1.995687e+01 1.304370e+00## greensp 8.404794e-04 8.738884e-04## population -9.940391e-03 2.273935e-03## museums -4.515772e+01 1.008513e+01## airbnb 6.022747e-01 2.496115e-01#### Spatial Coefficients:## rho lambda## [1,] 0.196536 0.018432#### Diagnostics## Deviance information criterion (DIC): 28193.01## Effective number of parameters (pd): -1.66553## Log likelihood: -14098.17## Pseudo R squared: 0.3601049#### Impacts:## direct indirect total## (Intercept) 1.881082e+03 4.592335e+02 2.340316e+03## size 4.300207e+00 1.049821e+00 5.350028e+00## age -1.996339e+01 -4.873715e+00 -2.483711e+01## greensp 8.407540e-04 2.052555e-04 1.046009e-03## population -9.943639e-03 -2.427567e-03 -1.237121e-02## museums -4.517248e+01 -1.102808e+01 -5.620055e+01## airbnb 6.024715e-01 1.470830e-01 7.495545e-01#### Quantiles:## 5% 25% 50% 75% 95%## (Intercept) 1.864369e+03 1.874059e+03 1.880361e+03 1.887328e+03 1.896080e+03## size 3.436255e+00 3.956910e+00 4.291712e+00 4.628642e+00 5.155081e+00## age -2.215863e+01 -2.075471e+01 -1.991798e+01 -1.911688e+01 -1.792525e+01## greensp -3.546526e-04 2.905312e-04 7.376810e-04 1.261277e-03 2.657171e-03## population -1.382163e-02 -1.159143e-02 -9.920309e-03 -8.353503e-03 -6.404121e-03## museums -6.148110e+01 -5.224350e+01 -4.495013e+01 -3.850940e+01 -2.847943e+01## airbnb 1.776907e-01 4.578970e-01 6.114716e-01 7.457536e-01 1.010643e+00and the two simpler models defined for rho = 0 and lambda=0. So,firstly, assuming rho = 0 (no interaction effects at the lower level) weget
res_1<-hsar(res.formula,data=model.data,W=NULL,M=M,Delta=Delta,burnin=500,Nsim=1000)## Warning in spdep::mat2listw(W): style is M (missing); style should be set to a valid value## Warning in sn2listw(df, style = style, zero.policy = zero.policy, from_mat2listw = TRUE):## style is M (missing); style should be set to a valid valuesummary(res_1)#### Call:## hsar(formula = res.formula, data = model.data, W = NULL, M = M,## Delta = Delta, burnin = 500, Nsim = 1000)## Type: hsar with rho = 0#### Coefficients:## Mean SD## (Intercept) 1.880592e+03 1.010450e+01## size 4.329009e+00 4.214029e-01## age -2.004845e+01 1.258780e+00## greensp 6.812935e-04 6.843458e-04## population -6.877688e-03 1.100394e-03## museums -4.585817e+01 9.479326e+00## airbnb 6.288388e-01 2.222552e-01#### Spatial Coefficients:## lambda## -0.130888#### Diagnostics## Deviance information criterion (DIC): 28196.24## Effective number of parameters (pd): -1.988165## Log likelihood: -14100.11## Pseudo R squared: 0.3587056#### Quantiles:## 5% 25% 50% 75% 95%## (Intercept) 1.863327e+03 1.874280e+03 1.880446e+03 1.887451e+03 1.897526e+03## size 3.648867e+00 4.026734e+00 4.331703e+00 4.647616e+00 5.040309e+00## age -2.217344e+01 -2.090501e+01 -2.002926e+01 -1.916105e+01 -1.800675e+01## greensp -5.464395e-04 3.468840e-04 7.498473e-04 1.081365e-03 1.660609e-03## population -8.718853e-03 -7.542340e-03 -6.897453e-03 -6.200430e-03 -4.988964e-03## museums -6.078241e+01 -5.205170e+01 -4.542701e+01 -3.995038e+01 -3.145765e+01## airbnb 2.844778e-01 4.953275e-01 6.164306e-01 7.496283e-01 9.872352e-01and secondly, given lambda = 0 (no interaction at the higher level)we get
res_2<-hsar(res.formula,data=model.data,W=W,M=NULL,Delta=Delta,burnin=500,Nsim=1000)## Warning in spdep::mat2listw(W): style is M (missing); style should be set to a valid value## Warning in sn2listw(df, style = style, zero.policy = zero.policy, from_mat2listw = TRUE):## style is M (missing); style should be set to a valid valuesummary(res_2)#### Call:## hsar(formula = res.formula, data = model.data, W = W, M = NULL,## Delta = Delta, burnin = 500, Nsim = 1000)## Type: hsar with lambda = 0#### Coefficients:## Mean SD## (Intercept) 1.880293e+03 9.970170e+00## size 4.271588e+00 4.581010e-01## age -1.995568e+01 1.295576e+00## greensp 9.672711e-04 6.581401e-04## population -9.434666e-03 2.083913e-03## museums -4.545286e+01 1.035321e+01## airbnb 5.415177e-01 1.964108e-01#### Spatial Coefficients:## rho## 0.19122#### Diagnostics## Deviance information criterion (DIC): 28196.99## Effective number of parameters (pd): -1.752399## Log likelihood: -14100.25## Pseudo R squared: 0.3597633#### Quantiles:## 5% 25% 50% 75% 95%## (Intercept) 1.864332e+03 1.873364e+03 1.880298e+03 1.886796e+03 1.896416e+03## size 3.550689e+00 3.944261e+00 4.254099e+00 4.559823e+00 5.073155e+00## age -2.192657e+01 -2.079846e+01 -1.995871e+01 -1.909676e+01 -1.780104e+01## greensp 3.886899e-05 5.256176e-04 8.835621e-04 1.378462e-03 2.197482e-03## population -1.282486e-02 -1.074985e-02 -9.589800e-03 -8.107401e-03 -6.107883e-03## museums -6.271483e+01 -5.293104e+01 -4.448211e+01 -3.801137e+01 -2.948482e+01## airbnb 2.208243e-01 4.100049e-01 5.411334e-01 6.705060e-01 8.635070e-01