Movatterモバイル変換


[0]ホーム

URL:


SuperGauss: Superfast Likelihood Inference for Stationary Gaussian TimeSeries

Likelihood evaluations for stationary Gaussian time series are typically obtained via the Durbin-Levinson algorithm, which scales as O(n^2) in the number of time series observations. This package provides a "superfast" O(n log^2 n) algorithm written in C++, crossing over with Durbin-Levinson around n = 300. Efficient implementations of the score and Hessian functions are also provided, leading to superfast versions of inference algorithms such as Newton-Raphson and Hamiltonian Monte Carlo. The C++ code provides a Toeplitz matrix class packaged as a header-only library, to simplify low-level usage in other packages and outside of R.

Version:2.0.4
Depends:R (≥ 3.0.0)
Imports:stats, methods,R6,Rcpp (≥ 0.12.7),fftw
LinkingTo:Rcpp,RcppEigen
Suggests:knitr,rmarkdown,testthat,mvtnorm,numDeriv
Published:2025-09-10
DOI:10.32614/CRAN.package.SuperGauss
Author:Yun Ling [aut], Martin Lysy [aut, cre]
Maintainer:Martin Lysy <mlysy at uwaterloo.ca>
BugReports:https://github.com/mlysy/SuperGauss/issues
License:GPL-3
URL:https://github.com/mlysy/SuperGauss
NeedsCompilation:yes
SystemRequirements:fftw3 (>= 3.1.2)
Materials:NEWS
CRAN checks:SuperGauss results

Documentation:

Reference manual:SuperGauss.html ,SuperGauss.pdf
Vignettes:Superfast Likelihood Inference for Stationary Gaussian Time Series (source,R code)

Downloads:

Package source: SuperGauss_2.0.4.tar.gz
Windows binaries: r-devel:SuperGauss_2.0.4.zip, r-release:SuperGauss_2.0.4.zip, r-oldrel:SuperGauss_2.0.4.zip
macOS binaries: r-release (arm64):SuperGauss_2.0.4.tgz, r-oldrel (arm64):SuperGauss_2.0.4.tgz, r-release (x86_64):SuperGauss_2.0.4.tgz, r-oldrel (x86_64):SuperGauss_2.0.4.tgz
Old sources: SuperGauss archive

Reverse dependencies:

Reverse imports:AIUQ,LMN

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=SuperGaussto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp