The dominant sequence transduction models are based on complex recurrent or convolutional neuralnetworks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a newsimplenetwork architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experi
メンヘラちゃんがディープラーニングの最新論文をバリバリ語ってくれるシリーズです.Twitterに投稿したスライドをまとめました. サムネ画像 スライド内のテキスト抽出(検索エンジン用) メンヘラちゃんと学ぶ ディープラーニング最新論文 製作: Ryobot はじめに 作者 • Ryobot (りょぼっと) • NAIST修士2年.RIKENAIP勤務 (2017/7~) • チャットボットの個性と多様性の研究をしています •Twitter@_Ryobot でお気に入り論文を紹介しています スライドの概要 • メンヘラちゃんが最新論文をバリバリ語ってくれます • 分野は主に自然言語処理 (機械翻訳と言語理解) です •Twitter で投稿したスライドのまとめです メンヘラちゃん • ジョイネット様制作のLINEスタンプです • 作者様がフリー素

スイマセン。クソ煽りタイトルですが、下記の記事のタイトル意訳しただけです。草生やして更にクソさを増してはいます。 NeuralnetworkAI issimple. So… Stop pretending you are a genius 個人的にはぜひ本文読んでこの記事のクソ煽りっぷりを満喫してほしいのですが、英語読むのもメンドクセという方に、何が書いてあるかをさらっとだけ説明すると。 要はニューラルネットワークって、↓のPythonで11行のコード分の処理やってるだけじゃね? こんなの使いまわした程度で「うはwww俺天才www」みたいな顔すんのやめろ、ってことのようです。 まぁハッキリ言って、クソ記事www煽り乙wwwなんですけど。 でもぶっちゃけ、真実なんですよ。ある面においては。 僕も今の会社に入るまでディープラーニングに関する知識ほぼゼロだったけど、今は少なくとも、自分の業
Googleが研究の一環で提供しているColaboratoryを試してみました。 Jupyterと同じようなGUIでPythonのプログラムを実行可能で、GPUも使えます。 Jupyterと同様に、先頭に「!」を書くことで、Linuxのコマンドを実行可能であり、「!pip」「!conda」「!apt-get」などで機能を追加できます。 実行結果をファイルシステム上に保管でき、共有リンクを使って取り出せます。 ただし、12時間経過すると強制終了されて、ファイルは失われます。 しかし、Notebookが動いている仮想マシンにGoogleドライブをマウント可能であり、これにより、実行結果をGoogleドライブ上のファイルとして保管できます。 Deep Learningでは、途中の状態をファイルに保管して、そこからResumeできるようにプログラムを書くことが多いので、12時間で一度強制終了しても

Tweet あけましておめでとうございます。 先日、MITTechnology Reviewにこのような記事が掲載されていました。 深層学習の過大評価は危険、ウーバーAI研究所の前所長が指摘 この論文を発表したのはニューヨーク大学の心理学者のゲイリー・マーカス教授。心理学者ということで、我々情報工学の立場とはまた違う立場で深層学習にできることとできないことを分離しています。 筆者はこのニュースを見て最初は反発したのですが、原文を読んでみると現状のディープラーニングの課題についてよくまとまっているのではないかと思いましたので紹介します。原文はこちら ■ディープラーニングの限界 マーカス教授によると、ディープラーニングは「無限のデータと無限の計算資源がある場合においては極めて有効である(In a world with infinite data, and infinite computati

AI(人工知能)に関わる技術、なかでもディープラーニングが急速に発達し、社会のさまざまな領域で実際に利用されるようになりました。その背景のひとつには、AI分野での研究開発に多大な投資を行っている大手IT企業が、その成果の一部をオープンソースとして公開し、世界中のエンジニアが自由に使えるようになったことがあります。 こうしたオープンソースのAI関連ライブラリには、Googleの「TensorFlow」やFacebookの「Torch」といった海外のIT企業のものだけでなく、国内にもPreferredNetworksの「Chainer」やソニーの「NeuralNetwork Libraries」などがあります。最近では、関連した情報も数多く手に入るようになりました。 また、これらのライブラリの多くには親切なチュートリアルも用意されており、AIの開発経験がないエンジニアでもさほど手間を掛ける

Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? はじめに本記事では、データサイエンティストを目指して勉強した半年間で学んだこと、気付いたことをまとめます。これからデータサイエンティストを目指して勉強する人の参考になればと思います。 最初の一手 個人的にではありますが、最初はアプローチの理解から始めると思いますが、数式とプログラミングの両方を勉強する方が良いと思います。**数式→プログラミング or プログラミング→数式の順序はどちらでも良いと思いますが、プログラミング(フレームワーク)のみ**はやめた方が良いと思います。出力結果の解釈で苦労することになるので、理論、数式はしっかり理

おしっこセンサーできました ウチの小学生の息子が家のトイレでたびたびおしっこをこぼしてしまう。俺がくどくど注意してもあんまり効果ない。そこで、代わりにAIに怒ってもらうことにした。こんな感じである。 おしっこセンサーのデモ([動画](https://www.youtube.com/watch?v=ktSukhHdogM))。水を数滴床にたらすとブザーが鳴り、床を拭くと止まる。 ディープラーニングの画像認識を使い、床の上に落ちた水滴をカメラで検出してブザーが鳴る仕組みだ。夏休みの自由工作に過ぎないので精度は期待していなかったけど、意外にきちんと動いてくれて、カメラに映る範囲に水滴を数滴たらすとピッピと鳴り、床を拭くとブザーも止まる。「お父さんだってAIくらい作れるぞ」と息子に自慢したいがための工作なのだ。 でも、これ作るのはそんなに難しくなくて、休み中の3日くらいで完成した。かかったお金は、

ソニーは8月17日、コーディングの知識がなくても、ディープラーニング(深層学習)のプログラムを生成できるソフトウェア「NeuralNetwork Console」の無償提供を始めた。自社の製品・サービス開発にも利用しているツールを多くの開発者や研究者に使ってもらうことで「ディープラーニング技術の発展につなげる」という。 NeuralNetwork Console。ドラッグ&ドロップ操作で「関数ブロック」を自由に配置し、ニューラルネットワークを視覚的に構築できる 同社は今年6月、ディープラーニングのプログラムを生成する際に使うコアライブラリー(基盤ソフトウェア)「NeuralNetwork Libraries」(以下、Libraries)をオープンソース化した。人間の脳を模倣した「ニューラルネットワーク」の設計、製品・サービスへの搭載を効率化する演算モジュール群だが、利用には高度なプロ

2017/8/3〜8/5 に開催のbuilderscon tokyo 2017 に行ってきました。 ついでに色々あってスピーカーとして登壇してきました。 詳細はこちら。 横山三国志に「うむ」は何コマある?〜マンガ全文検索システムの構築 ウムの数を数えるに至るまで そもそもこの話がどこから始まったかというと、十数年前に 二次裏(虹裏)という掲示板で突如「ウム!」 というコマが貼られだした辺りだと思います。 当時広島で大学生しててCREATIVEという部の部長だったんですけど(今でもあるのかな?)、大学祭のときに何故か皆でウムの人を書き続けるという遊びをしていました。 そこから、それまでは読んだことあるなー程度だった横山三国志に深くハマることになります。 なお、大学では「マルコフ確率場を用いた自動作曲」という、今のDeepLearningが出る前のAIで生成系の研究をしていました。これ

全脳アーキテクチャ若手の会第28回勉強会 Keywords: DQN, 強化学習, Episodic Control, Curiosity-driven Exploration

最近発売されたディープラーニングの本。 基礎的な内容から始まり、主にリカレントネットワークを、TensorFlowとKerasによる実装を通して理解していきます。 結論 今回紹介する本 誰におすすめか TensorFlowあるいはKerasを使っていきたいユーザー リカレントネットワークを使いたいユーザー 誰におすすめでないか Chainerを使っていきたいユーザー 既にTensorFlowあるいはKerasを使いこなしている方本の構成 1章:数学の準備(1〜22ページ) 2章:Pythonの準備(23〜68ページ) 3章:ニューラルネットワーク(69〜140ページ) 4章:ディープニューラルネットワーク(141〜207ページ) 5章:リカレントニューラルネットワーク(209〜249ページ) 6章:リカレントニューラルネットワークの応用(251〜293ページ) 付録(295〜310ページ

この記事は2年前の以下の記事のアップデートです。 前回はとりあえずデータサイエンティストというかデータ分析職一般としてのスキル要件として、「みどりぼん程度の統計学の知識」「はじパタ程度の機械学習の知識」「RかPythonでコードが組める」「SQLが書ける」という4点を挙げたのでした。 で、2年経ったらいよいよ統計分析メインのデータサイエンティスト(本物:及びその他の統計分析職)vs.機械学習システム実装メインの機械学習エンジニアというキャリアの分岐が如実になってきた上に、各方面で技術革新・普及が進んで来たので、上記の過去記事のスキル要件のままでは対応できない状況になってきたように見受けられます。 そこで、今回の記事では「データサイエンティスト」*1「機械学習エンジニア」のそれぞれについて、現段階で僕が個人的に考える「最低限のスキル要件」をさっくり書いてみようかと思います。最初にそれらを書

最近、深層学習の精度を超えた手法が発表されています。 今回は、昨日(6月17日)ニュースになったDeepmindによるPredictron(自動計画+強化学習)も含めて、紹介します。

Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 動機 いわずもがなですが、機械学習の勉強にはとても時間が掛かります。 でも、同じ勉強時間を費やしたとしても、教材の良し悪しで捗り方が大きく変わってくることは、誰もが実感していることだと思います。 そこで、本記事ではテーマごとに私が考える最強の教科書をリストしていこうと思います。 ディープラーニング(アルゴリズムの理解) 「Deep Learning」An MIT Press book, 2016/12 発行 http://www.deeplearningbook.org/ 印刷本も売られてますが、上のWebページでいつでもタダで読めます

The rise of artificial intelligence in recent years is grounded in the success of deep learning. Three major drivers caused thebreakthrough of (deep) neuralnetworks: the availability of huge amounts of training data, powerful computational infrastructure, and advances in academia. Thereby deep learning systems start to outperform not only classical methods, but also human benchmarks in various t

こんにちは,Ryobot (りょぼっと) です. 概要 「メモリネットワーク」は代表的な記憶装置付きニューラルネットワークである.本稿ではメモリモデル (記憶装置付きニューラルネットワーク) をいくつか概説し,論文 2 紙 (1) MemoryNetworks, (2) TowardsAI-Complete Question Answering の理論的な記述を全文翻訳して補足説明している. 目次 メモリモデルの概説 MemoryNetworks (MemNN) 1 メモリネットワークの概要 2 基本モデル 3 拡張モデル 4 実験 TowardsAI-Complete Question Answering (bAbI task) 1 メモリネットワークの拡張 2 bAbI タスク 3 実験 長文である.ざっくり知るだけなら「メモリモデルの概説」と MemoryNetworks

ディープラーニング実践入門 ~ Kerasライブラリで画像認識をはじめよう! ディープラーニング(深層学習)に興味あるけど「なかなか時間がなくて」という方のために、コードを動かしながら、さくっと試して感触をつかんでもらえるように、解説します。 はじめまして。宮本優一と申します。 最近なにかと話題の多いディープラーニング(深層学習、deep learning)。エンジニアHubの読者の方でも、興味ある人は多いのではないでしょうか。 しかし、ディープラーニングについて周りのエンジニアに聞いてみると、 「なんか難しそう」 「なかなか時間がなくて、どこから始めれば良いかも分からない」 「一回試してみたんだけど、初心者向けチュートリアル(MNISTなど)を動かして挫折しちゃったんだよね」 という声が聞こえてきます。 そこで! この記事では、そうした方を対象に、ディープラーニングをさくっと試して感触を

概要:本研究では,畳み込みニューラルネットワークを用いて,シーンの大域的かつ局所的な整合性を考慮した画像補完を行う手法を提案する.提案する補完ネットワークは全層が畳み込み層で構成され,任意のサイズの画像における自由な形状の「穴」を補完できる.この補完ネットワークに,シーンの整合性を考慮した画像補完を学習させるため,本物の画像と補完された画像を識別するための大域識別ネットワークと局所識別ネットワークを構築する.大域識別ネットワークは画像全体が自然な画像になっているかを評価し,局所識別ネットワークは補完領域周辺のより詳細な整合性によって画像を評価する.この2つの識別ネットワーク両方を「だます」ように補完ネットワークを学習させることで,シーン全体で整合性が取れており,かつ局所的にも自然な補完画像を出力することができる.提案手法により,様々なシーンにおいて自然な画像補完が可能となり,さらに従来の
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く