(Background image by Pixabay) 最近また「データ分析をやるならRとPythonのどちらでやるべきか」という話題が出ていたようです。 言語仕様やその他の使い勝手という点では、大体この記事に書いてあることを参考にすれば良いと思います。その上で、人には当然ながら趣味嗜好がありますので、個々人が好みだと思う方を使えば良い話ではあります。 とは言え、僕自身もクソコードの羅列ながらこのブログにR &Pythonのコードを載せているということもあるので、便乗して今回の記事では僕個人の意見と感想も書いてみようと思います。いつもながらど素人の意見(特にPythonは本業ではない)なのと、自分がメインに使っているRでもtidyverseをほとんど使わないなど割とout-of-dateな使い方をしているということもあり、読んでいておかしなところなどあればどしどしご指摘くださると有難

はじめに なぜか唐突にRブームが俺の中でやってきてしまってどうしようもないので、Rの本を注文しまくってたりしていたら、下のような本の山が出来てしまいました。 これらの本を付箋でペタペタしながら読み進めていくうちに、段々とRというのはどういう言語で、どういう風に勉強するといいのか、という方針が固まってきたので、ここにメモをしておきます。 Rとはどのような言語か 一言で、しかも乱暴に言ってしまうならば「統計に特化したPHP」というのが一番雰囲気を伝えられるかもしれない。いや、PHPの悪評は知っているし、ガチでRをやっている人にとっては嫌がられることもわかっているけど、あえてそういう説明が、あくまで入り口としてはわかりやすいのではないかと。 どういうことかというのを言い訳します。 自分が読んだ感じだと、統計というのは、「何らかのデータ」と「分析するためのツールとしての数式」と「その数式が意図する

1リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く