A popular method for exploring high-dimensional data is something called t-SNE, introduced by van der Maaten and Hinton in 2008 [1]. Thetechnique has become widespread in the field ofmachine learning, sinceit has an almost magical ability tocreate compelling two-dimensonal “maps” from data with hundreds or even thousands of dimensions. Although impressive, these images can betempting to misre
(Photo by Pixabay) これはただの年末ポエムです。何ひとつとして高度に技術的な話もなければ、ためになる話もありませんので予めご了承ください。 時が流れるのは早いもので、僕がインダストリーにおけるデータ分析の仕事を手がけるようになってから5年目の今年もほどなく終わろうとしています。上記の記事ではその間にあった様々な出来事を振り返りましたが、今回は現在の仕事のやり方について最近感じていることを徒然なるままに書き散らしてみようかと思います。 想像を超えて遥かに進んでいく「最先端」 今の業界*1で最先端と言えば一般にはDeep Learningとか〇〇Netのことを指すことが多いですし、以前「今の状況は『俺が考えた最強のネットワーク選手権』だ」と言った通りの有様だと個人的には認識しています*2。 その意味では今年も最先端の研究開発の進化のスピードはとどまることを知らないという印象で

データサイエンティストの中村です。今回はイメージファーストなファッションアイテム検索システムを作ってみたのでそちらの紹介をしたいと思います。本記事で紹介する技術はIBIS2016でも報告しています。 概要ファッションアイテムを探すとき、見た目の印象はとても大事な要素です。ファッションは感覚的なものなので、自分が欲しい服について言葉で説明することは難しいですが、そのアイテムの良し悪しは画像を見ただけで判断できるからです。 今回開発した検索システムは見た目の印象を大事にしたいので、画像をクエリとします。ただし、ただの画像検索では面白くないので、色や形状などの属性情報を付加した状態で検索を実行できるようにしました。 例えば、「シルエットは良いんだけど、これの赤いやつが欲しい」のような感覚的な注文を、以下のGIFのように画像に属性を付加する形で拾っています。 よくある検索システムではカテゴリに

気が付いたら僕がデータ分析業界に身を置くようになってそろそろ5年近くになるんですね*1。この5年間の間に色々勉強したり業界内で見聞してきた経験をもとに、「実務の現場においてモデリングを行う上での注意点」についてだらだらと書いてみようと思います。 と言うのも、色々な現場で様々なモデリング(統計学的にせよ機械学習的にせよ)が行われていることが伝わってくるようになった一方で、ともすれば「え?こんな基礎的なポイントも守ってないの?」みたいなとんでもないモデリングがまかり通る現場があると愚痴る声を業界内で聞くことが少なくないので。自戒の意も込めて重要なポイントを備忘録としてブログ記事にまとめておくのも有益かなと思った次第です。 この記事では手法選択(線形・一般化線形・ベイズ+MCMC・識別関数・識別モデル・生成モデル・樹木モデル・Deep Learningetc.)の話題は割愛しました。一般に、モ

1リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く