本記事では、時系列予測に利用できるpythonのライブラリの使い方について説明をします。 パッとライブラリを使うことを目指すため具体的なアルゴリズムの説明は省きます。 ※説明が間違えている場合があればご指摘いただけると助かります。 目次 利用データ ライブラリ Prophet PyFlux PyroPytorchLightgbm 補足:Darts まとめ ソースコード このブログで記載されているソースコードはGitHubに上げておいたのでもしよろしければ参考にしてください。github.com 利用データ 今回用いるデータはkaggleのM5 Forecasting - Accuracyと呼ばれるコンペティションで利用されたデータを用います。 作成したランダムなデータよりも実データのほうが予測をしている感があるからです。 予測に使うデータはwalmartの売上データです。 下図はその
ちょっと前に、しょうもないことを某所で放言したら思いの外拡散されてしまいました。機械学習の説明可能性(解釈性)、大半のケースで求められているのは厳密な分類・回帰根拠ではなく受け手の「納得感」なので、特に実ビジネス上は説明可能性に長けたモデルを開発するより、納得できないお客さんを巧みに関係性構築した上で口八丁で完璧に説得できる凄腕営業ピープルを雇う方が重要— TJO (@TJO_datasci) 2019年11月23日 これ自体は与太話なので実際どうでも良い*1のですが、最近色々な研究や技術開発の進展はたまた実務家による考察などを見ていて、「機械学習の説明可能性(解釈性)というのは思った以上に複雑な迷宮だ」と感じることがままあったのでした。 ということで、今回の記事では僕のサーベイの範囲でザッと見て目についた資料などを超絶大雑把にリストアップした上で、主に実務における説明可能性とは何かとい
こんにちは。ぼへみあです。機械学習がすっかりブームになって、仕事や趣味でディープラーニングを使ったことがある人が増えていると思います。 特に画像分野でディープラーニングは成果を上げているので、特定のものを判別・識別するといった事例が多いかと思います。 そうした画像系のディープラーニング経験者なら経験する現象があります。 それは、 「その分野について、作ったAIよりも自分が詳しくなる」 という現象です。 おそ松さん見分けの第一人者になってしまった 以前取り組んだおそ松さんの6つ子をディープラーニングで見分けるネタでは、学習用データセットの作成のために、自力で5000枚以上のおそ松さんたちを見分ける作業を行いました。その結果、アニメを見ても、これは何松だ、と判断できるようになってしまいました。当時はおそ松さんを見分ける能力は誰にも負けない自信がありました。 なぜか学会でおそ松さんの話をする機
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く