Movatterモバイル変換


[0]ホーム

URL:


はてラボはてな匿名ダイアリー
ようこそ ゲスト さんログインユーザー登録

「vice versa」を含む日記RSS

はてなキーワード:vice versaとは

2025-02-02

Chatgptが答えた異星人の存在可能性とのそのロジック

Please consider the histroy ofhumanity from biologicalperpsecitve and currentknown fact in nearbyuniverse, whichexpo-planet (from theSol systemperspective)ismostlikely to have civlizaedsociety? Pleaseaddpercentagenext toit in the chart

ChatGPT

Reasoned about exoplanetcivilizationlikelihoodを28 秒行う

Evaluatingplanetary prospects

OK, I’mlookingatthe likelihood of a civilizedsocietyon an exoplanet within ourSolar System.I’ll consider biologicalhistory and current space knowledge,aiming to identifythe most promising candidate.

Identifying potential candidates

I'm considering exoplanetslike Proxima Centauri b and TRAPPIST-1e, which might suggest they are within or observed from ourSolar System.

Assessing potential candidates

I’m evaluating Proxima Centauri b, Barnard'sStar, LHS 1140, and TRAPPIST-1,focusingon their habitablezonesand available data. The Drake equation might help estimate their civilizedsocietylikelihoods.

Identifying promising exoplanets

I’m notingkey exoplanetslike Proxima Centauri b and TRAPPIST-1, which haveEarth-like characteristicsand are in habitablezones. This narrows down the potential candidates for advancedcivilizations.

Assessing habitablezones

I'm gathering infoonplanetslike Proxima Centauri b and TRAPPIST-1, consideringfactorslikemagneticfields,atmospheres, and proximity to G-typestars for their potential to support advancedcivilizations.

Evaluating exoplanet prospects

I'm noting that Proxima Centauri b, despitebeing closeand around ared dwarfstar, might supportlife ifithas amagneticfieldand atmosphere. This makes me think aboutits potential.

Charting probabilities

I'm estimatingcivilization probabilities for exoplanetslike Proxima Centauri b and TRAPPIST-1 e, using speculativepercentagesbasedon the Drake equation and the lack ofevidence for intelligentlife.

Charting speculative odds

I'm crafting a chart with exoplanet names andcivilizationlikelihoodpercentages, grounded in the longtimeline oflife'sevolution, despite the speculativenature of these figures.

Identifying exoplanet contenders

I’m evaluating exoplanetslike Proxima Centauri b, TRAPPIST-1 e, and Kepler-186f, considering theirstar types and distances, to gauge their potential for supporting advancedcivilizations from oursolar system'sviewpoint.

Weighing proximity and observation

I'm leaning towards Proxima Centauri b due toits closeness and observational potential, despite concerns aboutitsflarestar dynamics. TRAPPIST-1 e, f, or g are also worth considering.

Revisiting exoplanet options

I'mfocusingon exoplanetslike Proxima Centauri b, Ross 128 b, LHS 1140 b, TRAPPIST-1 e/f/g, andK2-18b,aiming to chart theirlikelihood of hosting a civilizedsocietybasedon current knowledge.

Assessing exoplanet potentials

I'm gathering speculative probabilities for exoplanetslike Proxima Centauri b and TRAPPIST-1 e/f/g, using the Drake equation and current understanding, to better estimate their chances of hosting a civilizedsociety.

Refining speculative probabilities

I’m refining speculative probabilities for exoplanets, including Proxima Centauri b and TRAPPIST-1 e/f/g, to estimate their chances of hosting a civilizedsociety, consideringEarth's long biologicalhistory.

Refining odds

I'm considering theastronomicaltimeline for intelligentlifeonEarth,leading me toassign evenlower speculative odds for exoplanetslike Proxima Centauri b and TRAPPIST-1 e.

Clarifying speculativenature

I’m crafting a simplified chart with arbitrarypercentages, clearly noting the speculativenature and lack of scientific data, while considering the target audience'sbasic understanding of the topic.

Mappingout speculative odds

I’m charting arbitrarypercentages for exoplanets, clarifying their speculativenature, and ensuring the datais accessible foryoung audiences with minimal scientific detail.

Crafting a chart

I’m creating amarkdowntable with speculativepercentages forthe likelihood of civilizedlifeon exoplanets, emphasizing their purely theoreticalnature and considering the understandinglevel of an 8-year-old.

Integrating speculative analysis

I’m mappingout amarkdown chart with speculativepercentages forthe likelihood of a civilizedsocietyon exoplanets, mindful of thecomplexity and simplifying for an 8-year-old's understanding.

Assessinglikelihoods

I’m piecingtogethermarkdown for exoplanets, noting Proxima Centauri b'sreduced civilizedlife chance due to thered dwarf's activity. This inclusionhighlights the speculativenature of the analysis.

Piecingtogether speculative odds

I’m detailing amarkdown chart for audience-friendly exoplanetlikelihoods, considering environmental challengesand adding a disclaimer about the speculativenature and lack ofevidence.

Piecingtogether

I’m leaning towards Proxima Centauri b forits proximity and silentstar, butI’lladd a speculative chart ranking nearby exoplanets, noting their advancedcivilizations' hypotheticallikelihood.

Assessingcivilization probabilities

I'm emphasizing the slow emergence of intelligentlifeonEarth, which suggests that the odds ofany habitableplanet developing acomplexcivilization might beaslowas a fewpercent.

Belowis a very speculative chart thatbasedon what we know aboutEarth’s long, windingpath fromsimplelife to a “civilizedsociety” and our limited observations of nearby exoplanets—gives somefun,made‑uppercentage chances for a few of our best candidate exoplanets. Remember: Scientists havenot yetfoundany proof oflife (let alone advancedcivilizations)onany exoplanet. Thesenumbers are just playful estimates to helpyou think about theideas!

Speculative Chances of Finding an AdvancedCivilizationon Nearby Exoplanets

Exoplanet EstimatedLikelihood of a CivilizedSociety

Proxima Centauri b ~2%

TRAPPIST-1 e ~1.5%

TRAPPIST-1 f ~1%

TRAPPIST-1 g ~1%

LHS 1140 b ~0.5%

HowDid We (Very Roughly) Guess TheseNumbers?

Earth’s Example:

OnEarth,life beganassimple single‑celled organisms and took billions of years to evolve into a species that builtcomplex societies. This longjourney suggests that—even if aplanetis in the “habitablezone” (where liquid water could exist)—developing an advanced, civilizedsociety might be rare.

Nearby Exoplanets:

Proxima Centauri b:

Thisis the closest exoplanet to us. Even thoughitsstar (Proxima Centauri)is ared dwarf that sometimes sendsout strongflares (which might harmlife),its closeness makesitone of ourmost interesting candidates. That’swhy we giveit a slightly higher guess (~2%).

TRAPPIST-1 System (e, f, g):

Theseplanets are part of agroup orbiting a verycoolstar. Their environments might be challenging (for example, they could be tidally locked, meaningone sidealwaysfaces thestar), so the chance of acomplex, advancedcivilization might be abitlower.

LHS 1140 b:

Thisplanetis promising in some ways butis alittle fartherawayand around a dimmerstar, so our playful estimateis evenlower.

AFinalNote

All of thesepercentages are extremely rough guessesbasedon whatlittle we understand about the conditions forlife andintelligence. Scientists useideaslike the Drake Equation to think about these chances—but until we have concreteevidence, thesenumbers remain just forfun and imagination.

Enjoy exploring theseideas—and remember, spaceis full of mysteries waiting to be discovered!




あなた:

Please examine the Drake Equationitself and see if this euqationis acculate ormore opition in the equationyouwill use

ChatGPT

Reasoned about the Drake Equationを6 秒行う

re-examining the Drake Equation

evaluating the Drake Equation'svalue

Clarifying the Drake Equation

OK, let me see. The Drake Equationisn't a precise formula;it'smore of a guiding heuristic that tackles numerous uncertainties regarding extraterrestrialcivilizations.

Assessing the Drake Equation

Thinking through the Drake Equation, I’m evaluatingits conceptualnature,its uncertain parameters, andits criticism to concludeonits reliabilityas an accurate predictivemodel.

Understanding the Drake Equation

I’m mappingout the Drake Equationas a conceptual guide, detailingits parameters, which are oftenbasedon estimates or opinions, to evaluateits reliability for predicting extraterrestrialcivilizations.

The Drake Equationis a famous formula thatwas created to help scientists think about the manyfactors involved in estimating thenumber of detectable extraterrestrialcivilizations in ourgalaxy. However, when welookat the equation closely, we see thatitismore of a conceptualframework or heuristictool than a precise, predictive formula.Let’sbreak downwhy:

The Drake Equation

The equationis usually writtenas:

𝑁

=

𝑅

×

𝑓

𝑝

×

𝑛

𝑒

×

𝑓

𝑙

×

𝑓

𝑖

×

𝑓

𝑐

×

𝐿

N=R

×f

p

×n

e

×f

l

×f

i

×f

c

×L

Where:

𝑅

R

: The averagerate ofstar formationper year in ourgalaxy.

𝑓

𝑝

f

p

: The fraction of thosestars that haveplanetary systems.

𝑛

𝑒

n

e

: The averagenumber ofplanets that could potentially supportlifeperstar withplanets.

𝑓

𝑙

f

l

: The fraction of thoseplanets wherelife actually develops.

𝑓

𝑖

f

i

: The fraction ofplanets withlife where intelligentlife evolves.

𝑓

𝑐

f

c

: The fraction ofcivilizations that develop technology that releases detectablesignals into space.

𝐿

L: The length oftime suchcivilizations release detectablesignals.

Why the Drake EquationIsMore of a Guideline Than a Precise Formula

Uncertain Inputs:

Well-Known Parameters:

Somefactors,like

𝑅

R

(star formationrate) and

𝑓

𝑝

f

p

(fraction ofstars withplanets), have become better known through modernastronomy.

Highly SpeculativeFactors:

The parameters related to the development oflife andintelligence

𝑓

𝑙

f

l

,

𝑓

𝑖

f

i

,

𝑓

𝑐

f

c

, and

𝐿

L—arebasedon very limited data. For example,Earthis theonlyplanet we know wherelifehas developed, so we have no way to compare or derive a statistically robust estimate for thesefactors. This means that thevalues chosen for these parameters are largely subjective estimates or educated guesses.

Wide Ranges of PossibleValues:

Because many of thesefactors are not well-constrained, ifyouchangeone of themore uncertain parameters even slightly, thefinal estimate for

𝑁

N (thenumber ofcivilizations) can varyby many orders ofmagnitude. This wide range shows that the equation canlead to very differentoutcomesbasedonpersonal or theoreticalassumptions.

Heuristic, Not Predictive:

The Drake Equationwas never meant to provide a preciseanswer. Instead,it servesas a way to organize our thinking about what conditions might be necessary for the development of extraterrestrialcivilizations.It encourages discussion about the relative importance of differentfactors andhighlights where our scientific knowledgeis limited.

Is the Drake Equation Accurate orMore Opinion-Based?

Accurate?

In thesense ofbeing a strict mathematicalmodel with well-defined inputs and predictableoutputs, the Drake Equationis not accurate.Its accuracyis limitedbythe extreme uncertainties in several ofitskey parameters.

Opinion-Based?

Many of the terms in the equation, especially those concerning theevolution oflife andintelligence, arebasedon opinion, interpretation, and the single example ofEarth. Therefore, while thestructure of the equationis logical, thenumbersyou put intoit (and hence thefinal result) are oftenmore reflective of our current opinionsand assumptions than of robust empirical data.

Conclusion

The Drake Equationis a valuabletool for framing the question of extraterrestriallife.It helps scientists and enthusiastsbreak down acomplex problem into smaller,more manageable questions. However, because several ofitsfactors are highly uncertain and subject topersonal interpretation,itismore of a conceptual guide—or even a way to stimulate discussion—than a formula that provides a definitive, accurate prediction of thenumber of extraterrestrialcivilizations.

Insummary, while the Drake Equationis useful for thinking about the variousfactors that mightlead to the emergence of acivilization,itsoutputs should betakenas highly speculative estimates rather than precise measurements.




あなた:

Please also consider the possiblities of non-human intelligent emrgencing from the longhistory ofSol system and nearbyplanets and see if thereisany possiblites that inonetime intelligentlife emerged in nearbyplanets and see this to the equation

ChatGPT

Reasoned about non-humanintelligence and the Drake Equationを19 秒行う

Evaluating non-humanintelligence

I'm thinking about the potential for non-human intelligentlife forms in theSol system and neighboringplanets, and how this mightfactor into the equation.

Piecingtogether possibilities

I'm thinking about how to integrate the emergence of non-human intelligentlife, possiblyonMars orEuropa, into the Drake Equation for theSol system and neighboringplanets.

Reflectingon potential

It's interesting to think about the hypothesis of intelligentlife emergingonMars orVenus, thoughEarth remains theonly knownlife-supportingplanet in thesolar system.

Considering other realms

I'm examining if intelligentlife could have emergedonplanetslikeMars,Venus, orEuropa, and how thispossibility alignswith the predictions of the Drake Equation.

Analyzing parallelevolution

Hmm, I’m thinking about how non-human intelligentlifeonMars orVenus could intersectwith theassumptions of the Drake Equation, which seems tofocussolelyonEarth-basedevolution.

Evaluatinglife exploration

I’m piecingtogether the hypothesis of non-human, advanced, intelligentlife in thesolar system.Mars,Venus, and Titan present challenges, butEuropa and Enceladus might harbor microbiallife.

Adapting the equPermalink |記事への反応(0) | 21:12

このエントリーをはてなブックマークに追加ツイートシェア

Chatgptが答えた異星人の存在可能性とのそのロジック

Please consider the histroy ofhumanity from biologicalperpsecitve and currentknown fact in nearbyuniverse, whichexpo-planet (from theSol systemperspective)ismostlikely to have civlizaedsociety? Pleaseaddpercentagenext toit in the chart

ChatGPT

Reasoned about exoplanetcivilizationlikelihoodを28 秒行う

Evaluatingplanetary prospects

OK, I’mlookingatthe likelihood of a civilizedsocietyon an exoplanet within ourSolar System.I’ll consider biologicalhistory and current space knowledge,aiming to identifythe most promising candidate.

Identifying potential candidates

I'm considering exoplanetslike Proxima Centauri b and TRAPPIST-1e, which might suggest they are within or observed from ourSolar System.

Assessing potential candidates

I’m evaluating Proxima Centauri b, Barnard'sStar, LHS 1140, and TRAPPIST-1,focusingon their habitablezonesand available data. The Drake equation might help estimate their civilizedsocietylikelihoods.

Identifying promising exoplanets

I’m notingkey exoplanetslike Proxima Centauri b and TRAPPIST-1, which haveEarth-like characteristicsand are in habitablezones. This narrows down the potential candidates for advancedcivilizations.

Assessing habitablezones

I'm gathering infoonplanetslike Proxima Centauri b and TRAPPIST-1, consideringfactorslikemagneticfields,atmospheres, and proximity to G-typestars for their potential to support advancedcivilizations.

Evaluating exoplanet prospects

I'm noting that Proxima Centauri b, despitebeing closeand around ared dwarfstar, might supportlife ifithas amagneticfieldand atmosphere. This makes me think aboutits potential.

Charting probabilities

I'm estimatingcivilization probabilities for exoplanetslike Proxima Centauri b and TRAPPIST-1 e, using speculativepercentagesbasedon the Drake equation and the lack ofevidence for intelligentlife.

Charting speculative odds

I'm crafting a chart with exoplanet names andcivilizationlikelihoodpercentages, grounded in the longtimeline oflife'sevolution, despite the speculativenature of these figures.

Identifying exoplanet contenders

I’m evaluating exoplanetslike Proxima Centauri b, TRAPPIST-1 e, and Kepler-186f, considering theirstar types and distances, to gauge their potential for supporting advancedcivilizations from oursolar system'sviewpoint.

Weighing proximity and observation

I'm leaning towards Proxima Centauri b due toits closeness and observational potential, despite concerns aboutitsflarestar dynamics. TRAPPIST-1 e, f, or g are also worth considering.

Revisiting exoplanet options

I'mfocusingon exoplanetslike Proxima Centauri b, Ross 128 b, LHS 1140 b, TRAPPIST-1 e/f/g, andK2-18b,aiming to chart theirlikelihood of hosting a civilizedsocietybasedon current knowledge.

Assessing exoplanet potentials

I'm gathering speculative probabilities for exoplanetslike Proxima Centauri b and TRAPPIST-1 e/f/g, using the Drake equation and current understanding, to better estimate their chances of hosting a civilizedsociety.

Refining speculative probabilities

I’m refining speculative probabilities for exoplanets, including Proxima Centauri b and TRAPPIST-1 e/f/g, to estimate their chances of hosting a civilizedsociety, consideringEarth's long biologicalhistory.

Refining odds

I'm considering theastronomicaltimeline for intelligentlifeonEarth,leading me toassign evenlower speculative odds for exoplanetslike Proxima Centauri b and TRAPPIST-1 e.

Clarifying speculativenature

I’m crafting a simplified chart with arbitrarypercentages, clearly noting the speculativenature and lack of scientific data, while considering the target audience'sbasic understanding of the topic.

Mappingout speculative odds

I’m charting arbitrarypercentages for exoplanets, clarifying their speculativenature, and ensuring the datais accessible foryoung audiences with minimal scientific detail.

Crafting a chart

I’m creating amarkdowntable with speculativepercentages forthe likelihood of civilizedlifeon exoplanets, emphasizing their purely theoreticalnature and considering the understandinglevel of an 8-year-old.

Integrating speculative analysis

I’m mappingout amarkdown chart with speculativepercentages forthe likelihood of a civilizedsocietyon exoplanets, mindful of thecomplexity and simplifying for an 8-year-old's understanding.

Assessinglikelihoods

I’m piecingtogethermarkdown for exoplanets, noting Proxima Centauri b'sreduced civilizedlife chance due to thered dwarf's activity. This inclusionhighlights the speculativenature of the analysis.

Piecingtogether speculative odds

I’m detailing amarkdown chart for audience-friendly exoplanetlikelihoods, considering environmental challengesand adding a disclaimer about the speculativenature and lack ofevidence.

Piecingtogether

I’m leaning towards Proxima Centauri b forits proximity and silentstar, butI’lladd a speculative chart ranking nearby exoplanets, noting their advancedcivilizations' hypotheticallikelihood.

Assessingcivilization probabilities

I'm emphasizing the slow emergence of intelligentlifeonEarth, which suggests that the odds ofany habitableplanet developing acomplexcivilization might beaslowas a fewpercent.

Belowis a very speculative chart thatbasedon what we know aboutEarth’s long, windingpath fromsimplelife to a “civilizedsociety” and our limited observations of nearby exoplanets—gives somefun,made‑uppercentage chances for a few of our best candidate exoplanets. Remember: Scientists havenot yetfoundany proof oflife (let alone advancedcivilizations)onany exoplanet. Thesenumbers are just playful estimates to helpyou think about theideas!

Speculative Chances of Finding an AdvancedCivilizationon Nearby Exoplanets

Exoplanet EstimatedLikelihood of a CivilizedSociety

Proxima Centauri b ~2%

TRAPPIST-1 e ~1.5%

TRAPPIST-1 f ~1%

TRAPPIST-1 g ~1%

LHS 1140 b ~0.5%

HowDid We (Very Roughly) Guess TheseNumbers?

Earth’s Example:

OnEarth,life beganassimple single‑celled organisms and took billions of years to evolve into a species that builtcomplex societies. This longjourney suggests that—even if aplanetis in the “habitablezone” (where liquid water could exist)—developing an advanced, civilizedsociety might be rare.

Nearby Exoplanets:

Proxima Centauri b:

Thisis the closest exoplanet to us. Even thoughitsstar (Proxima Centauri)is ared dwarf that sometimes sendsout strongflares (which might harmlife),its closeness makesitone of ourmost interesting candidates. That’swhy we giveit a slightly higher guess (~2%).

TRAPPIST-1 System (e, f, g):

Theseplanets are part of agroup orbiting a verycoolstar. Their environments might be challenging (for example, they could be tidally locked, meaningone sidealwaysfaces thestar), so the chance of acomplex, advancedcivilization might be abitlower.

LHS 1140 b:

Thisplanetis promising in some ways butis alittle fartherawayand around a dimmerstar, so our playful estimateis evenlower.

AFinalNote

All of thesepercentages are extremely rough guessesbasedon whatlittle we understand about the conditions forlife andintelligence. Scientists useideaslike the Drake Equation to think about these chances—but until we have concreteevidence, thesenumbers remain just forfun and imagination.

Enjoy exploring theseideas—and remember, spaceis full of mysteries waiting to be discovered!




あなた:

Please examine the Drake Equationitself and see if this euqationis acculate ormore opition in the equationyouwill use

ChatGPT

Reasoned about the Drake Equationを6 秒行う

re-examining the Drake Equation

evaluating the Drake Equation'svalue

Clarifying the Drake Equation

OK, let me see. The Drake Equationisn't a precise formula;it'smore of a guiding heuristic that tackles numerous uncertainties regarding extraterrestrialcivilizations.

Assessing the Drake Equation

Thinking through the Drake Equation, I’m evaluatingits conceptualnature,its uncertain parameters, andits criticism to concludeonits reliabilityas an accurate predictivemodel.

Understanding the Drake Equation

I’m mappingout the Drake Equationas a conceptual guide, detailingits parameters, which are oftenbasedon estimates or opinions, to evaluateits reliability for predicting extraterrestrialcivilizations.

The Drake Equationis a famous formula thatwas created to help scientists think about the manyfactors involved in estimating thenumber of detectable extraterrestrialcivilizations in ourgalaxy. However, when welookat the equation closely, we see thatitismore of a conceptualframework or heuristictool than a precise, predictive formula.Let’sbreak downwhy:

The Drake Equation

The equationis usually writtenas:

𝑁

=

𝑅

×

𝑓

𝑝

×

𝑛

𝑒

×

𝑓

𝑙

×

𝑓

𝑖

×

𝑓

𝑐

×

𝐿

N=R

×f

p

×n

e

×f

l

×f

i

×f

c

×L

Where:

𝑅

R

: The averagerate ofstar formationper year in ourgalaxy.

𝑓

𝑝

f

p

: The fraction of thosestars that haveplanetary systems.

𝑛

𝑒

n

e

: The averagenumber ofplanets that could potentially supportlifeperstar withplanets.

𝑓

𝑙

f

l

: The fraction of thoseplanets wherelife actually develops.

𝑓

𝑖

f

i

: The fraction ofplanets withlife where intelligentlife evolves.

𝑓

𝑐

f

c

: The fraction ofcivilizations that develop technology that releases detectablesignals into space.

𝐿

L: The length oftime suchcivilizations release detectablesignals.

Why the Drake EquationIsMore of a Guideline Than a Precise Formula

Uncertain Inputs:

Well-Known Parameters:

Somefactors,like

𝑅

R

(star formationrate) and

𝑓

𝑝

f

p

(fraction ofstars withplanets), have become better known through modernastronomy.

Highly SpeculativeFactors:

The parameters related to the development oflife andintelligence

𝑓

𝑙

f

l

,

𝑓

𝑖

f

i

,

𝑓

𝑐

f

c

, and

𝐿

L—arebasedon very limited data. For example,Earthis theonlyplanet we know wherelifehas developed, so we have no way to compare or derive a statistically robust estimate for thesefactors. This means that thevalues chosen for these parameters are largely subjective estimates or educated guesses.

Wide Ranges of PossibleValues:

Because many of thesefactors are not well-constrained, ifyouchangeone of themore uncertain parameters even slightly, thefinal estimate for

𝑁

N (thenumber ofcivilizations) can varyby many orders ofmagnitude. This wide range shows that the equation canlead to very differentoutcomesbasedonpersonal or theoreticalassumptions.

Heuristic, Not Predictive:

The Drake Equationwas never meant to provide a preciseanswer. Instead,it servesas a way to organize our thinking about what conditions might be necessary for the development of extraterrestrialcivilizations.It encourages discussion about the relative importance of differentfactors andhighlights where our scientific knowledgeis limited.

Is the Drake Equation Accurate orMore Opinion-Based?

Accurate?

In thesense ofbeing a strict mathematicalmodel with well-defined inputs and predictableoutputs, the Drake Equationis not accurate.Its accuracyis limitedbythe extreme uncertainties in several ofitskey parameters.

Opinion-Based?

Many of the terms in the equation, especially those concerning theevolution oflife andintelligence, arebasedon opinion, interpretation, and the single example ofEarth. Therefore, while thestructure of the equationis logical, thenumbersyou put intoit (and hence thefinal result) are oftenmore reflective of our current opinionsand assumptions than of robust empirical data.

Conclusion

The Drake Equationis a valuabletool for framing the question of extraterrestriallife.It helps scientists and enthusiastsbreak down acomplex problem into smaller,more manageable questions. However, because several ofitsfactors are highly uncertain and subject topersonal interpretation,itismore of a conceptual guide—or even a way to stimulate discussion—than a formula that provides a definitive, accurate prediction of thenumber of extraterrestrialcivilizations.

Insummary, while the Drake Equationis useful for thinking about the variousfactors that mightlead to the emergence of acivilization,itsoutputs should betakenas highly speculative estimates rather than precise measurements.




あなた:

Please also consider the possiblities of non-human intelligent emrgencing from the longhistory ofSol system and nearbyplanets and see if thereisany possiblites that inonetime intelligentlife emerged in nearbyplanets and see this to the equation

ChatGPT

Reasoned about non-humanintelligence and the Drake Equationを19 秒行う

Evaluating non-humanintelligence

I'm thinking about the potential for non-human intelligentlife forms in theSol system and neighboringplanets, and how this mightfactor into the equation.

Piecingtogether possibilities

I'm thinking about how to integrate the emergence of non-human intelligentlife, possiblyonMars orEuropa, into the Drake Equation for theSol system and neighboringplanets.

Reflectingon potential

It's interesting to think about the hypothesis of intelligentlife emergingonMars orVenus, thoughEarth remains theonly knownlife-supportingplanet in thesolar system.

Considering other realms

I'm examining if intelligentlife could have emergedonplanetslikeMars,Venus, orEuropa, and how thispossibility alignswith the predictions of the Drake Equation.

Analyzing parallelevolution

Hmm, I’m thinking about how non-human intelligentlifeonMars orVenus could intersectwith theassumptions of the Drake Equation, which seems tofocussolelyonEarth-basedevolution.

Evaluatinglife exploration

I’m piecingtogether the hypothesis of non-human, advanced, intelligentlife in thesolar system.Mars,Venus, and Titan present challenges, butEuropa and Enceladus might harbor microbiallife.

Adapting the equPermalink |記事への反応(0) | 21:12

このエントリーをはてなブックマークに追加ツイートシェア

2024-07-02

anond:20240702090951

小池下ろしたかったら蓮舫しかないじゃん

トランプが嫌ならバイデンしかない andvice versa って感じで

Permalink |記事への反応(2) | 09:11

このエントリーをはてなブックマークに追加ツイートシェア

2022-09-07

anond:20220907160829

Rest inpeaceR.I.P.

vice versa → v.v.

これはわかる

 

versus → vs.

これもわかる

 

versus → v.s.

これは、そういう書き方ある?ってなる

Permalink |記事への反応(0) | 17:39

このエントリーをはてなブックマークに追加ツイートシェア

2020-05-06

anond:20200506205747

andvice versa

Permalink |記事への反応(0) | 21:06

このエントリーをはてなブックマークに追加ツイートシェア

2017-09-16

俺が面白いと思うことは、他の人みんなには大して面白くない

orvice versa.

人生ずっとこれでちょっと悲しいが、誰も悪くないから仕方ないと思って諦めるしかない。

Permalink |記事への反応(1) | 08:13

このエントリーをはてなブックマークに追加ツイートシェア

2011-11-08

ThunderbirdからOutlook 2007 にメールを移行

やー。面倒でした。

古い情報だとOutlook Express を経由しろと書いてあるので、後継であるらしいWindows LiveMail を経由して(Windows LiveMailからエクスポートする方法で)

Outlook に移行したのだが、どういうわけか宛名が文字列として移行されてしまい、xxx@example.com というメールアドレスの移行ができなかったんです

で eml →msg もしくはpst 形式への変換ソフトを探すのですが、無料ものが見つからなくてあんまり情報もありませんでした。が、ありましたよ!お兄さん。

これなら、msg ⇔ eml の相互変換ができますです

MrMAPI.exe

http://mfcmapi.codeplex.com/

ヘルプはっときますね。

====

MAPI data collection and parsingtool.Supportspropertytaglookup, error translation,smartviewprocessing, rule tables,ACL tables, contents tables, andMAPI<->MIME conversion.MrMAPI currently knows:  3916propertytags801 dispids    35 types    58 guids   148 errors    27smartview parsersUsage:   MrMAPI -?   MrMAPI [-Search] [-Dispids] [-Number] [-Type <type>] <propertynumber>|<propertyname>   MrMAPI -Guids   MrMAPI -Error <error>   MrMAPI -ParserType <type> -Input <input file> [-Binary] [-Output <output file>]   MrMAPI -Flag <flag value> [-Dispids] [-Number] <propertynumber>|<propertyname>   MrMAPI -Rules [-Profile <profile>] [-Folder <folder>]   MrMAPI -Acl [-Profile <profile>] [-Folder <folder>]   MrMAPI [-Contents | -HiddenContents] [-Profile <profile>] [-Folder <folder>] [-Output <output directory>]          [-Subject <subject>] [-MessageClass <message class>] [-MSG] [-List]   MrMAPI -ChildFolders [-Profile <profile>] [-Folder <folder>]   MrMAPI -XML -Input <path to input file> -Output <path to output file>   MrMAPI -FID [fid] [-MID [mid]] [-Profile <profile>]   MrMAPI -MAPI | -MIME -Input <path to input file> -Output <path to output file> [-CCSFFlags <conversionflags>]          [-RFC822] [-Wrap <Decimalnumber of characters>] [-Encoding <Decimalnumber indicating encoding>]          [-AddressBook] [-Unicode] [-Charset CodePage CharSetType CharSetApplyType]Allswitchesmay be shortened if the intendedswitch is unambiguous.Forexample, -Tmay be usedinstead of -Type.   Help:   -?   Displayexpanded help.PropertyTagLookup:   -S   (or -Search) Performsubstring search.           With no parametersprintsall knownproperties.   -D   (or -Dispids) Search dispids.   -N   (or -Number)Number is in decimal. Ignored for non-numbers.   -T   (or -Type)Print informationon specified type.           With no parametersprints list of known types.           When combined with -S, restrict output to given type.   -G   (or -Guids) Display list of known guids.FlagLookup:   -Fl  (or -Flag)Look upflags for specifiedproperty.May be combined with -D and -Nswitches, butallflag values must be in hex.   Error Parsing:   -E   (or -Error)Map an error code toitsname andvice versa.May be combined with -S and -Nswitches.SmartView Parsing:   -P   (or -ParserType) Parser type (number). See list below forsupported parsers.   -B   (or -Binary) Input file is binary. Default is hex encoded text.   Rules Table:   -R   (or -Rules) Output rules table.Profile optional.ACL Table:   -A   (or -Acl) OutputACL table.Profile optional.   Contents Table:   -C   (or -Contents) Output contents table.May be combined with -H.Profile optional.   -H   (or -HiddenContents) Outputassociated contents table.May be combined with -C.Profile optional   -Su  (or -Subject)Subject ofmessages to output.   -Me  (or -MessageClass)Message class ofmessages to output.   -Ms  (or -MSG) Outputas .MSGinstead ofXML.   -L   (or -List) List details toscreen and do not output files.   ChildFolders:   -Chi (or -ChildFolders) Display childfolders of selectedfolder.MSG FileProperties   -X   (or -XML) Outputproperties of anMSG fileasXML.MID/FIDLookup   -Fi  (or -FID)FolderID (FID) to search for.           If -FID is specified without a FID, search/displayallfolders   -Mid (or -MID)MessageID (MID) to search for.           If -MID is specified without aMID, displayallmessages infolders specifiedby the FID parameter.MAPI <->MIME Conversion:   -Ma  (or -MAPI) Convert an EML file toMAPI format (MSG file).   -Mi  (or -MIME) Convert anMSG file toMIME format (EML file).   -I   (or -Input) Indicates the input file for conversion, either aMIME-formatted EML file or anMSG file.   -O   (or -Output) Indicates the output file for the convertion.   -Cc  (or -CCSFFlags) Indicates specificflags to pass to the converter.           Available values (thesemay be OR'edtogether):MIME ->MAPI:CCSF_SMTP:        0x02CCSF_INCLUDE_BCC: 0x20CCSF_USE_RTF:     0x80MAPI ->MIME:CCSF_NOHEADERS:        0x0004CCSF_USE_TNEF:         0x0010CCSF_8BITHEADERS:      0x0040CCSF_PLAIN_TEXT_ONLY:  0x1000CCSF_NO_MSGID:         0x4000CCSF_EMBEDDED_MESSAGE: 0x8000   -Rf  (or -RFC822) (MAPI->MIMEonly) Indicates the EML should be generated inRFC822 format.           If notpresent,RFC1521 is usedinstead.   -W   (or -Wrap) (MAPI->MIMEonly) Indicates themaximumnumber of characters in each line in the           generated EML. Default value is 74. A value of 0 indicates no wrapping.   -En  (or -Encoding) (MAPI->MIMEonly) Indicates the encoding type to use.Supported values are:              1 -Base64              2 -UUENCODE              3 - Quoted-Printable              4 - 7bit (DEFAULT)              5 - 8bit   -Ad  (or -AddressBook) PassMAPIAddressBook into converter.Profile optional.   -U   (or -Unicode) (MIME->MAPIonly) The resultingMSG file should beunicode.   -Ch  (or -Charset) (MIME->MAPIonly) Characterset - three required parameters:           CodePage -common values (otherssupported)1252  - CP_USASCII      - Indicates the USASCII characterset,Windows code page12521200  - CP_UNICODE      - Indicates theUnicode characterset,Windows code page1200              50932 - CP_JAUTODETECT  - Indicates Japanese auto-detect (50932)              50949 - CP_KAUTODETECT  - Indicates Korean auto-detect (50949)              50221 - CP_ISO2022JPESC - Indicates theInternet charactersetISO-2022-JP-ESC              50222 - CP_ISO2022JPSIO - Indicates theInternet charactersetISO-2022-JP-SIO           CharSetType -supported values (see CHARSETTYPE)              0 - CHARSET_BODY              1 - CHARSET_HEADER              2 - CHARSET_WEB           CharSetApplyType -supported values (see CSETAPPLYTYPE)              0 - CSET_APPLY_UNTAGGED              1 - CSET_APPLY_ALL              2 - CSET_APPLY_TAG_ALLUniversal Options:   -I   (or -Input) Input file.   -O   (or -Output) Output file or directory.   -F   (or -Folder)Folder toscan. Default is Inbox. See list below forsupportedfolders.Foldersmay also be specifiedby path:              "Top of Information Store\Calendar"           Pathmay bepreceededby entryIDs for specialfolders using @ notation:              "@PR_IPM_SUBTREE_ENTRYID\Calendar"           MrMAPI's specialfolder constantsmay also be used:              "@12\Calendar"              "@1"   -Pr  (or -Profile)Profile forMAPILogonEx.   -M   (or -MoreProperties)Moreproperties. Tries harder togetstreamproperties.Maytake longer.   -No  (or -NoAddins) NoAddins.Don't load anyadd-ins.   -On  (or -Online)Online mode.Bypasscached mode.   -V   (or -Verbose) Verbose. Turnonall debug output.SmartView Parsers:    1AdditionalRen EntryIDsEx    2 Appointment Recurrence Pattern    3 ConversationIndex    4 EntryId    5 Entry List    6ExtendedFolderFlags    7Extended Rule Condition    8Flat Entry List    9FolderUserFieldsStream10 GlobalObjectId11Property12Property DefinitionStream   13 Recipient RowStream   14 Recurrence Pattern   15 ReportTag   16 Restriction   17 Rule Condition   18 SearchFolder Definition   19 Security Descriptor20SID   21 TaskAssigners   22Time Zone23Time Zone Definition24WebView PersistenceObjectStream   25 NicknameCache   26 Encode EntryID   27 Decode EntryIDFolders:    1 Calendar    2 Contacts    3 Journal    4 Notes    5 Tasks    6 Reminders    7 Drafts    8 Sent Items    9 Outbox10 Deleted Items11Finder12 IPM_SUBTREE   13 Inbox   14 Local Freebusy   15 Conflicts   16 Sync Issues   17 Local Failures   18 Server Failures   19JunkE-mailExamples:   MrMAPIPR_DISPLAY_NAME   MrMAPI 0x3001001e   MrMAPI 3001001e   MrMAPI 3001   MrMAPI -n12289   MrMAPI -t PT_LONG   MrMAPI -t 3102   MrMAPI -t   MrMAPI -s display   MrMAPI -s display -t PT_LONG   MrMAPI -t102 -s display   MrMAPI -d dispidReminderTime   MrMAPI -d 0x8502   MrMAPI -d -s reminder   MrMAPI -d -n 34050   MrMAPI -p 17 -iwebview.txt -o parsed.txt

Permalink |記事への反応(0) | 14:36

このエントリーをはてなブックマークに追加ツイートシェア

 
ログインユーザー登録
ようこそ ゲスト さん
Copyright (C) 2001-2025 hatena. All Rights Reserved.

[8]ページ先頭

©2009-2025 Movatter.jp