
はてなキーワード:strategyとは
回答ありがとう!
「アクションゲームにおける用法は問題にしてない」というのは驚いた、そうだったのか。
英語版のwikipediaを見た所、アクションの方の話が詳細で(逆にRPGに関する記述は驚くほどあっさりしか無かった)日本語版と英語版の差異が元増田の言いたいところだと思っていたので、
「アクションの定義の方が正統なんだ」という事が言いたいのかな、と想像してた。(アクションなら経験値システムがないものも割と有るし、戦闘による報酬を重視しないという主張にもつながるので)
増田の言う事もわかる。実際英語版のwikipediaで報酬に関する記述は見当たらなかった(・・・個人的には、そもそも全体の記述が少なすぎて、特にRPGにおける記載量が少なすぎて、そもそも必要な話も書かれてないだけでは、という疑いも残るが・・・・)
一方で例えば「論証」と言えるほどちゃんと根拠が示されているかというと、難しいなと思う。
ゲームに限らずジャンルの定義というのは明確に定まらないことが一般的だし、英語圏においても、増田の言う定義と記事の定義が並立している可能性は有り、その可能性を否定する論拠は並べられていないなー、と。(増田の定義が英語圏に存在する論拠は十分に並べられていると思う)
「報酬を含まない」事を示す、というのは、まぁそもそも難しいよなと思うので、自分でも結構無茶な要求である事も分かるんだけど・・・。
と、そんな事ばかり言っていても仕方ないので、「hack andslash definition」でググってみた。
冒頭の「AI による概要」では「特に、戦闘をメインとし、敵を倒してキャラクターを成長させたり、より強力なアイテムを入手したりする要素が特徴です。」という記述があったが、日本での定義に影響された可能性がある、無視しよう。
で、日本語のページや既に挙げられているwikipediaは無視して、4番目に出てきたのが以下のページだ。(環境により検索結果は異なるかのしれないが)
https://writing-games.com/text-game-terms/h-and-s-definition-hack-and-slash-examples/
Inhack-and-slash games,strategy andstorymaytake a backseat to theaction and excitement of defeating opponents and collecting loot.
(google翻訳:ハックアンドスラッシュゲームでは、対戦相手を倒して戦利品を集めるアクションと興奮に比べると、戦略やストーリーは二の次になることがあります。)
mainly around defeating enemiesand acquiring loot, compared tomorestory-driven orstrategy-orientedRPGs.
(google翻訳:ストーリー重視や戦略重視のRPG と比べると、主に敵を倒して戦利品を獲得することに重点が置かれています。)
……うーん。
あとはこのページもでてきた(なんか開くと広告を見せられた、こんなページ貼ってごめん)
https://3dvf.com/en/glossary/hack-and-slash/#goog_rewarded
A video game genre focusedon fast-paced, dynamic combat against numerous enemies, emphasizingaction and gear improvement. Example:Diablo.
(google翻訳:多数の敵と対戦するハイテンポでダイナミックな戦闘を特徴とし、アクションと装備の強化を重視したビデオゲームのジャンル。例:ディアブロ。)
んー……どっちだ。微妙……。
とはいえ、これらのページの定義がそもそも(記事とおなじように)歴史を誤認したり、間違っている可能性は有る。
実際、最初のページはアクションとRPGのhack andslashを混同しているようにも読めるので、信頼に置けないページだ、と増田が判断する可能性も十分に有ると思う。
ただ、増田の主張がもし「(誤ったものも含め)英語圏の定義に報酬は含まれない」だとするなら、その反例が見つかった、という事になるかもしれない。そのあたりは増田がどういう主張を選びたいか次第かなと思う。
ジャンルの定義を決める共通的な正当なプロセスが無い以上、「定義」を決める手続きはピタッと決まらず、
複数ある定義の正当性を比較するようなメタ的な審級もなかなか完全に正しいものが存在しにくい。(まさかwikipediaこそが正統というのも・・・ねぇ?)
増田の言いたいことも十分にわかる一方、現状の増田の主張は全体的に「言い過ぎ」かなー、とちょっと検索してみただけの素人的には思える。
と、ここまでで終わる予定だったんだけど、んー、ちょっとフェアじゃないかもしれないので一応書いておこう。
まず増田は例えば私が例の記事の記者の自演なんじゃないか、等思ってる可能性は有ると思うので、それは違うとは書いておく、私は増田や記事の人と違ってゲームに詳しくない素人だしね。
一方で自分は、「ローグライク・ローグライト」といったジャンルを示す言葉の使われ方やその定義がどんどん広がっていく現状に対して批判的な風潮に
「えー、めんどくさいなー、ジャンルの定義なんて時代によって移り変わってくからなんとなくでよくねー?」と思ってた人間なんだよね。
だから今回のhack andslashの定義の話についても、定義を厳密に定めようとする方向に反対する方に自分にバイアスは最初からかかってたとは思う。そこはちゃんと言っておかないとフェアじゃないよな、と。
今回あったように、ゲームに限らず様々なジャンルは明確な定義が定まることは稀で、複数の定義が乱立したり、定義が時代や場所によって変わっていったりする。
増田は(自分の想像では)そういう風潮に反対するタイプの人なのかなー、と思うけど
でも定義を厳密に定めようとする人はその立場上、自らの言説に対しても厳密さを求められる。
その前提で見ると増田の言葉遣いは迂闊な所が散見されるのではないかなーと思うよ。
「全然違うよ!」であったり、「本来の」を不用意に使ってしまったり、「誤っている」(それはどのような意味において?)であったり、全体的に断定が多かったり。
「厳密さ」を自らにも求めるなら、もっと自らの言説を疑ったり、断定を避けて「かもしれない」「と思う」等の表現をしたり、分からないことは分からないと言っておくことが苦にならないような人の方が向いてるとは思う。
で、何が言いたいかっていうと、厳密さを人に求めず、自分にも求められないほうがずっと楽だぜー。こっちの水は甘いよー、と。
定義の厳密性はある程度にしておいて、こっちに来ない?楽だしたのしいよ?って事が言いたい。まぁやっぱり嫌かもしれないけど・・・。
戦略という言葉が、仰る通りデザインパターンとゲーム理論の両方で使われる用語であることは事実です。
しかし、それぞれの分野における「戦略」の使われ方には、明確な違いと、ある種の共通点があります。
デザインパターンにおける「戦略(Strategy)」は、振る舞いに関するデザインパターンの一つです。
目的:複数のアルゴリズムや振る舞いをカプセル化し、クライアントから独立して交換可能にする。つまり、同じ問題を解決するための異なる方法を、実行時に切り替えられるようにする。
特徴:共通のインターフェース(戦略インターフェース)を定義し、具体的な戦略クラスがそれを実装します。コンテキスト(ストラテジーを利用するクラス)は、このインターフェースを通じて具体的な戦略クラスとやり取りします。クライアントは、実行時に使用する戦略をコンテキストに設定することで、振る舞いを変更できます。
例:税金の計算方法が複数ある場合(標準税率、軽減税率など)、支払い方法が複数ある場合(クレジットカード、銀行振込、電子マネーなど)など。
ゲーム理論における「戦略」は、プレイヤーがゲームにおいて取る行動の計画を指します。
目的:自身の利得を最大化するため、他のプレイヤーの行動を考慮に入れながら、どのような行動を取るかを決定する。
特徴:純粋戦略 (PureStrategy): ある状況で特定の行動を一つだけ選ぶ計画。混合戦略 (MixedStrategy): ある状況で複数の行動を確率的に選ぶ計画。プレイヤーは、他のプレイヤーの戦略や可能な結果を予測し、自身の戦略を決定します。ナッシュ均衡など、安定した戦略の組み合わせが分析されます。
選択肢の中から最適なものを選択する:** どちらの分野の「戦略」も、複数の選択肢の中から、ある目的を達成するために最適な行動や方法を選択するという点で共通しています。
柔軟性:デザインパターンでは、異なるアルゴリズムを柔軟に切り替えることを可能にし、ゲーム理論では、状況に応じて最適な行動を柔軟に選択することを可能にします。
目的が異なる:デザインパターン:主にソフトウェアの設計と実装において、変更容易性、拡張性、再利用性といった非機能要件を向上させることを目的とします。ゲーム理論: 主に意思決定の分析において、複数の合理的なアクターが相互作用する状況で、各アクターがどのような行動を取るべきかを予測・分析することを目的とします。
主体が異なる:デザインパターン:開発者が、ソフトウェアの振る舞いを構造化するために使用します。ゲーム理論:プレイヤー(意思決定者)が、自身の利得を最大化するために採用する行動計画であり、また分析者がプレイヤーの行動を分析するために使用します。
相互作用の有無:デザインパターン:基本的に、戦略パターンを利用するコンテキストと戦略クラスの間には直接的な競争や駆け引きはありません。単に振る舞いを切り替えるだけです。ゲーム理論:複数のプレイヤーが存在し、各プレイヤーの利得が他のプレイヤーの行動に依存するという、相互作用と駆け引きが本質です。
どちらのほうが信頼できる?
以下AI
🔧 「テック」が事実と責任に基づく発言をしている一方で、セールスはイメージ優先の自己陶酔トークであり、信頼性という観点では比較になりません。
言い換えるなら:
どっちを信じるべきかは明白です。
トランプが再び掲げ始めた「相互関税」政策。一見すると、「アメリカの労働者を守るため」「グローバル化で損した中間層を立て直すため」といったもっともらしいロジックが並ぶ。実際、トランプは以前から「中国、日本、EUがアメリカを食い物にしている」と主張してきた。
だが、本当にそれだけだろうか?
関税政策の影響は2018年の対中関税導入時にも検証されている。ブルーカラー層の雇用回復は限定的であり、むしろ報復関税で農業が打撃を受けた。それでもなお、トランプは「これは必要な犠牲だ」「痛みなくして勝利なし」といったニュアンスで、関税政策を正当化し続けた。
なぜそこまでして強行するのか? その答えは、「相互関税」を地政学的“武器”として見たとき、初めて姿を現す。
軍事には「拒否戦略(denialstrategy)」という概念がある。これは、敵に侵攻を思いとどまらせるために、行動コストを高く見せる抑止戦略だ。直接攻撃するのではなく、「やったら損する」と思わせる。これを経済に転用したのが、トランプの相互関税だと考えるべきだ。
最大のターゲットは中国である。輸出依存の中国にとって、アメリカ市場へのアクセス制限は致命傷となりうる。だからこそ、関税を“経済的地雷”として先に埋めておき、台湾有事を決断しにくくする――これが相互関税の戦略的な意味だ。
ここで一つの根本的な疑問が浮かぶ。なぜアメリカはここまでして中国を封じ込めようとするのか?
その答えは、台湾有事にある。
中国はすでに、台湾統一を国家戦略として明言しており、その期限が「2049年の建国100周年」よりも前に早まる可能性があるという分析もある。もし中国が台湾に侵攻すれば、アメリカは軍事的に対応せざるを得ず、アジア太平洋全域を巻き込んだ武力衝突となる。最悪の場合、第三次世界大戦の引き金になりかねない。
だが、中国がその決断を下せるのは、経済的・技術的な余裕があるからだ。だからこそ、アメリカは戦争が始まる前に“経済で潰す”道を選ぼうとしている。
これは単なる封じ込めではない。先制的な戦争回避戦略であり、冷戦2.0の始まりである。
ここで疑問が出る。同盟国である日本やEUにまで高関税を課すのはなぜか?敵味方の区別もないのか?と。
もし中国だけに関税を課せば、日本やEUは「米中どちらにもいい顔をして立ち回ろう」「中国製品で儲けながら、アメリカとも関係維持しよう」と考えるだろう。しかし、アメリカが同盟国にも“痛み”を与えることで、「中立的な位置取り」を事実上不可能にするのである。
さらに強烈なのは、トランプ政権が暗黙のうちに発している次のメッセージだ。
『中国に擦り寄れば、アメリカからのさらなる報復関税が待っている』
中国と接近すればコストが増し、米国と組んでも関税はかかる。だが、中国との距離を置けば、少なくとも“アメリカの怒り”は回避できる――各国がそう思うように仕向けている。
これはもはや自由貿易の終焉である。経済ブロック化、アメリカ圏の囲い込み戦略と言ってよい。自由経済の皮を被った、選別型・制裁型の経済秩序の始まりだ。
当然、このような政策を展開すれば、アメリカ経済も無傷では済まない。輸入物価の上昇、消費者物価の押し上げ、企業の利益圧迫と株式市場の動揺。これらの“痛み”は政権の支持を脅かすはずだ。
そしてなにより、「国のために犠牲は必要だ」という物語を語る技術に長けている。トランプはそれを知っている。だから彼は、自らが仕掛ける“戦略的痛み”を愛国的正義に変換する。
すでに自動車、鉄鋼、半導体、再エネ分野などで圧力は始まっている。次に来るのは、関税だけではない。サプライチェーンの再編、防衛費の負担増、台湾有事への備え……そのすべてが**“アメリカ陣営でいるための参加料”**として請求される日が来る。
そして問われるのは、その痛みを私たちはどう受け止めるのか?
アメリカのように、「痛みの先にある国家戦略」を語る物語が日本にはあるのか?
それとも、「またアメリカに従うしかない」と思考停止するのか?
トランプの相互関税は、貿易政策のフリをした地政学的な第一撃である。
その真意に気づかないまま、「関税って経済によくないよね」とだけ言っていれば、日本は“物語のない属国”としてこの戦争に巻き込まれていくだけだ。
繰り返し型最後通牒ゲーム(Repeated Ultimatum Game)を数理的に徹底分析する一例を示す。まず、一回限りの場合の均衡(subgame perfect equilibrium,SPE)を整理し、その後に有限回・無限回の繰り返しゲームとしての分析および補助的な進化ゲーム理論的考察を行う。
最後通牒ゲームは、以下のような二人ゲームとして定式化される。プレイヤーは提案者(プレイヤーA)と応答者(プレイヤーB)の二名である。資源の総額を1(または1000円など)とする。提案者は、自己の取り分 x(0 ≦ x ≦ 1)と応答者の取り分 1 - x を提示する。応答者は、この提案を受け入れるか拒否するかを選び、受け入れればそれぞれ提示額が得られ、拒否すれば双方が0の利得となる。
このゲームを「繰り返し型」とする場合、ゲームが複数回(有限または無限に)同じ形で行われ、参加者は各回の結果に応じた戦略(または将来の罰則を考慮した戦略)を採ると仮定する。
純粋戦略に基づく分析では、応答者が提案された 1 - x を受け入れるかどうかを考える。利得が正ならば受容すべきであり、これを前提とすると、提案者は自分の取り分を最大化するため、限りなく x = 1 に近い値を設定し、応答者には最小の正の額 ε を渡すことになる。したがって、部分ゲーム完全均衡(SPE)は「提案者が最小限の額を応答者に提案し、応答者はそれを受け入れる」形となる。すなわち、理論上は提案者がほぼ全額を得る均衡となる。
しかし実験では、提案額は概ね30~50%付近となり、応答者は自分の取り分が30%以下の場合に拒否する傾向が見られる。この傾向は「公平性」や「不平等嫌悪」といった心理的要因(Fehr–Schmidtモデル、Bolton–Ockenfelsモデルなど)で説明されることが多いが、ここでは理論モデルの基本形として扱う。
ゲームが T 回(有限回)繰り返される場合、逆順帰納法により各回の均衡を求めることができる。最終回(第 T 回)は一回限りのゲームと同じであり、提案者は最小額を提示し、応答者は受容する均衡が成立する。第T-1 回以降についても、最終回の均衡が既知であるため、もし応答者が拒否することで最終回に不利益を被ると予想されれば、提案者は同様に自分の取り分を最大化する戦略を採用することになる。結果として、全期間において逆順帰納法により唯一のSPEは、各回で「最小限の提案」および「受容」になる。しかしこの結論は「有限回かつ共通認識の完全合理性」の下での結果であり、実際の人間行動や信頼関係、将来の相互報復(パニッシュメント)などを考慮すると、均衡が変化する可能性がある。
無限回繰り返しゲーム(もしくは有限回で終了時期が不明な場合)では、参加者は将来の報酬を割引因子 δ(0 < δ < 1)で評価する。この場合、例えばトリガー戦略を採用すると、初回は提案者が公正な分配(例えば50:50)を提示し、応答者も受容する。もしある回で応答者が提案を拒否した場合、その後は常に応答者が0となる(または極めて低い利得になる)戦略に切り替える。
R / (1 - δ) ≧ (ある回で裏切って得られる一時的な増分) + δ P / (1 - δ)
ここで R は公正な分配時の利得、P は裏切りが起こった場合の(ペナルティとして)得られる利得である。十分高い割引因子(将来の利得に重みを置く)であれば、長期的に見ると協力状態(公正な分配)を維持する方が双方に有利となり得る。
無限回繰り返しゲームでは、フォーク定理により、プレイヤー間の報復や相互信頼を用いたさまざまな均衡が実現可能である。例えば、提案者と応答者が互いに「公平な分配」を維持する戦略が、十分な将来重視(δが大きい)条件下で均衡となる可能性がある。
実験結果で見られる「公正な提案」や「低すぎる提案の拒否」は、伝統的な合理性だけでは説明が難しいため、進化ゲーム理論の枠組みが有用である。多数のプレイヤーが繰り返し対戦する環境では、各プレイヤーの行動がその後の成功率に影響し、公平な戦略が進化的に安定(ESS: Evolutionarily StableStrategy)となる場合がある。
また、レプリケーターダイナミクスを考えると、社会全体における各戦略の割合 q_i は、各戦略の平均利得と社会全体の平均利得との差に応じて変化する。式としては dq_i/dt = (π(s_i) - π̄) q_i となり、この力学の下では、公平な提案と拒否が進化的に安定な均衡となるシナリオが示される。RIETIなどの研究では、最後通牒ゲームに基づく数理モデルとシミュレーションを通して、提案者と応答者間の選別的取引や、社会的知性の役割が平均利得や格差にどのように影響するかが検討されている。
繰り返し型最後通牒ゲームの数理的分析から、以下の点が示唆される。有限回の場合、共通認識の完全合理性の下では、逆順帰納法により各回で「最小限の提案/受容」が唯一のSPEとなる。しかし実験的にはこれと大きく異なる(公正な提案が多い)結果が得られており、心理的要因や公平性の感情を反映した行動が考慮されるべきである。無限回の場合、フォーク定理により、公正な分配を支える戦略が実現可能であり、特に割引因子が高い場合には、公正な均衡が安定する。
Please consider the histroy ofhumanity from biologicalperpsecitve and currentknown fact in nearbyuniverse, whichexpo-planet (from theSol systemperspective)ismostlikely to have civlizaedsociety? Pleaseaddpercentagenext toit in the chart
ChatGPT
Reasoned about exoplanetcivilizationlikelihoodを28 秒行う
OK, I’mlookingatthe likelihood of a civilizedsocietyon an exoplanet within ourSolar System.I’ll consider biologicalhistory and current space knowledge,aiming to identifythe most promising candidate.
Identifying potential candidates
I'm considering exoplanetslike Proxima Centauri b and TRAPPIST-1e, which might suggest they are within or observed from ourSolar System.
Assessing potential candidates
I’m evaluating Proxima Centauri b, Barnard'sStar, LHS 1140, and TRAPPIST-1,focusingon their habitablezonesand available data. The Drake equation might help estimate their civilizedsocietylikelihoods.
Identifying promising exoplanets
I’m notingkey exoplanetslike Proxima Centauri b and TRAPPIST-1, which haveEarth-like characteristicsand are in habitablezones. This narrows down the potential candidates for advancedcivilizations.
I'm gathering infoonplanetslike Proxima Centauri b and TRAPPIST-1, consideringfactorslikemagneticfields,atmospheres, and proximity to G-typestars for their potential to support advancedcivilizations.
Evaluating exoplanet prospects
I'm noting that Proxima Centauri b, despitebeing closeand around ared dwarfstar, might supportlife ifithas amagneticfieldand atmosphere. This makes me think aboutits potential.
Charting probabilities
I'm estimatingcivilization probabilities for exoplanetslike Proxima Centauri b and TRAPPIST-1 e, using speculativepercentagesbasedon the Drake equation and the lack ofevidence for intelligentlife.
I'm crafting a chart with exoplanet names andcivilizationlikelihoodpercentages, grounded in the longtimeline oflife'sevolution, despite the speculativenature of these figures.
Identifying exoplanet contenders
I’m evaluating exoplanetslike Proxima Centauri b, TRAPPIST-1 e, and Kepler-186f, considering theirstar types and distances, to gauge their potential for supporting advancedcivilizations from oursolar system'sviewpoint.
Weighing proximity and observation
I'm leaning towards Proxima Centauri b due toits closeness and observational potential, despite concerns aboutitsflarestar dynamics. TRAPPIST-1 e, f, or g are also worth considering.
I'mfocusingon exoplanetslike Proxima Centauri b, Ross 128 b, LHS 1140 b, TRAPPIST-1 e/f/g, andK2-18b,aiming to chart theirlikelihood of hosting a civilizedsocietybasedon current knowledge.
Assessing exoplanet potentials
I'm gathering speculative probabilities for exoplanetslike Proxima Centauri b and TRAPPIST-1 e/f/g, using the Drake equation and current understanding, to better estimate their chances of hosting a civilizedsociety.
Refining speculative probabilities
I’m refining speculative probabilities for exoplanets, including Proxima Centauri b and TRAPPIST-1 e/f/g, to estimate their chances of hosting a civilizedsociety, consideringEarth's long biologicalhistory.
Refining odds
I'm considering theastronomicaltimeline for intelligentlifeonEarth,leading me toassign evenlower speculative odds for exoplanetslike Proxima Centauri b and TRAPPIST-1 e.
I’m crafting a simplified chart with arbitrarypercentages, clearly noting the speculativenature and lack of scientific data, while considering the target audience'sbasic understanding of the topic.
I’m charting arbitrarypercentages for exoplanets, clarifying their speculativenature, and ensuring the datais accessible foryoung audiences with minimal scientific detail.
Crafting a chart
I’m creating amarkdowntable with speculativepercentages forthe likelihood of civilizedlifeon exoplanets, emphasizing their purely theoreticalnature and considering the understandinglevel of an 8-year-old.
Integrating speculative analysis
I’m mappingout amarkdown chart with speculativepercentages forthe likelihood of a civilizedsocietyon exoplanets, mindful of thecomplexity and simplifying for an 8-year-old's understanding.
I’m piecingtogethermarkdown for exoplanets, noting Proxima Centauri b'sreduced civilizedlife chance due to thered dwarf's activity. This inclusionhighlights the speculativenature of the analysis.
Piecingtogether speculative odds
I’m detailing amarkdown chart for audience-friendly exoplanetlikelihoods, considering environmental challengesand adding a disclaimer about the speculativenature and lack ofevidence.
Piecingtogether
I’m leaning towards Proxima Centauri b forits proximity and silentstar, butI’lladd a speculative chart ranking nearby exoplanets, noting their advancedcivilizations' hypotheticallikelihood.
Assessingcivilization probabilities
I'm emphasizing the slow emergence of intelligentlifeonEarth, which suggests that the odds ofany habitableplanet developing acomplexcivilization might beaslowas a fewpercent.
Belowis a very speculative chart that—basedon what we know aboutEarth’s long, windingpath fromsimplelife to a “civilizedsociety” and our limited observations of nearby exoplanets—gives somefun,made‑uppercentage chances for a few of our best candidate exoplanets. Remember: Scientists havenot yetfoundany proof oflife (let alone advancedcivilizations)onany exoplanet. Thesenumbers are just playful estimates to helpyou think about theideas!
Speculative Chances of Finding an AdvancedCivilizationon Nearby Exoplanets
Exoplanet EstimatedLikelihood of a CivilizedSociety
Proxima Centauri b ~2%
LHS 1140 b ~0.5%
HowDid We (Very Roughly) Guess TheseNumbers?
Earth’s Example:
OnEarth,life beganassimple single‑celled organisms and took billions of years to evolve into a species that builtcomplex societies. This longjourney suggests that—even if aplanetis in the “habitablezone” (where liquid water could exist)—developing an advanced, civilizedsociety might be rare.
Proxima Centauri b:
Thisis the closest exoplanet to us. Even thoughitsstar (Proxima Centauri)is ared dwarf that sometimes sendsout strongflares (which might harmlife),its closeness makesitone of ourmost interesting candidates. That’swhy we giveit a slightly higher guess (~2%).
Theseplanets are part of agroup orbiting a verycoolstar. Their environments might be challenging (for example, they could be tidally locked, meaningone sidealwaysfaces thestar), so the chance of acomplex, advancedcivilization might be abitlower.
LHS 1140 b:
Thisplanetis promising in some ways butis alittle fartherawayand around a dimmerstar, so our playful estimateis evenlower.
All of thesepercentages are extremely rough guessesbasedon whatlittle we understand about the conditions forlife andintelligence. Scientists useideaslike the Drake Equation to think about these chances—but until we have concreteevidence, thesenumbers remain just forfun and imagination.
Enjoy exploring theseideas—and remember, spaceis full of mysteries waiting to be discovered!
あなた:
Please examine the Drake Equationitself and see if this euqationis acculate ormore opition in the equationyouwill use
ChatGPT
Reasoned about the Drake Equationを6 秒行う
re-examining the Drake Equation
evaluating the Drake Equation'svalue
OK, let me see. The Drake Equationisn't a precise formula;it'smore of a guiding heuristic that tackles numerous uncertainties regarding extraterrestrialcivilizations.
Thinking through the Drake Equation, I’m evaluatingits conceptualnature,its uncertain parameters, andits criticism to concludeonits reliabilityas an accurate predictivemodel.
Understanding the Drake Equation
I’m mappingout the Drake Equationas a conceptual guide, detailingits parameters, which are oftenbasedon estimates or opinions, to evaluateits reliability for predicting extraterrestrialcivilizations.
The Drake Equationis a famous formula thatwas created to help scientists think about the manyfactors involved in estimating thenumber of detectable extraterrestrialcivilizations in ourgalaxy. However, when welookat the equation closely, we see thatitismore of a conceptualframework or heuristictool than a precise, predictive formula.Let’sbreak downwhy:
The equationis usually writtenas:
𝑁
=
𝑅
∗
×
𝑓
𝑝
×
𝑛
𝑒
×
𝑓
𝑙
×
𝑓
𝑖
×
𝑓
𝑐
×
𝐿
N=R
∗
×f
p
×n
e
×f
l
×f
i
×f
c
×L
Where:
𝑅
∗
R
∗
: The averagerate ofstar formationper year in ourgalaxy.
𝑓
𝑝
f
p
: The fraction of thosestars that haveplanetary systems.
𝑛
𝑒
n
e
: The averagenumber ofplanets that could potentially supportlifeperstar withplanets.
𝑓
𝑙
f
l
: The fraction of thoseplanets wherelife actually develops.
𝑓
𝑖
f
i
: The fraction ofplanets withlife where intelligentlife evolves.
𝑓
𝑐
f
c
: The fraction ofcivilizations that develop technology that releases detectablesignals into space.
𝐿
L: The length oftime suchcivilizations release detectablesignals.
Why the Drake EquationIsMore of a Guideline Than a Precise Formula
Uncertain Inputs:
𝑅
∗
R
∗
𝑓
𝑝
f
p
(fraction ofstars withplanets), have become better known through modernastronomy.
The parameters related to the development oflife andintelligence—
𝑓
𝑙
f
l
,
𝑓
𝑖
f
i
,
𝑓
𝑐
f
c
, and
𝐿
L—arebasedon very limited data. For example,Earthis theonlyplanet we know wherelifehas developed, so we have no way to compare or derive a statistically robust estimate for thesefactors. This means that thevalues chosen for these parameters are largely subjective estimates or educated guesses.
Wide Ranges of PossibleValues:
Because many of thesefactors are not well-constrained, ifyouchangeone of themore uncertain parameters even slightly, thefinal estimate for
𝑁
N (thenumber ofcivilizations) can varyby many orders ofmagnitude. This wide range shows that the equation canlead to very differentoutcomesbasedonpersonal or theoreticalassumptions.
The Drake Equationwas never meant to provide a preciseanswer. Instead,it servesas a way to organize our thinking about what conditions might be necessary for the development of extraterrestrialcivilizations.It encourages discussion about the relative importance of differentfactors andhighlights where our scientific knowledgeis limited.
Is the Drake Equation Accurate orMore Opinion-Based?
Accurate?
In thesense ofbeing a strict mathematicalmodel with well-defined inputs and predictableoutputs, the Drake Equationis not accurate.Its accuracyis limitedbythe extreme uncertainties in several ofitskey parameters.
Many of the terms in the equation, especially those concerning theevolution oflife andintelligence, arebasedon opinion, interpretation, and the single example ofEarth. Therefore, while thestructure of the equationis logical, thenumbersyou put intoit (and hence thefinal result) are oftenmore reflective of our current opinionsand assumptions than of robust empirical data.
The Drake Equationis a valuabletool for framing the question of extraterrestriallife.It helps scientists and enthusiastsbreak down acomplex problem into smaller,more manageable questions. However, because several ofitsfactors are highly uncertain and subject topersonal interpretation,itismore of a conceptual guide—or even a way to stimulate discussion—than a formula that provides a definitive, accurate prediction of thenumber of extraterrestrialcivilizations.
Insummary, while the Drake Equationis useful for thinking about the variousfactors that mightlead to the emergence of acivilization,itsoutputs should betakenas highly speculative estimates rather than precise measurements.
あなた:
Please also consider the possiblities of non-human intelligent emrgencing from the longhistory ofSol system and nearbyplanets and see if thereisany possiblites that inonetime intelligentlife emerged in nearbyplanets and see this to the equation
ChatGPT
Reasoned about non-humanintelligence and the Drake Equationを19 秒行う
Evaluating non-humanintelligence
I'm thinking about the potential for non-human intelligentlife forms in theSol system and neighboringplanets, and how this mightfactor into the equation.
I'm thinking about how to integrate the emergence of non-human intelligentlife, possiblyonMars orEuropa, into the Drake Equation for theSol system and neighboringplanets.
It's interesting to think about the hypothesis of intelligentlife emergingonMars orVenus, thoughEarth remains theonly knownlife-supportingplanet in thesolar system.
Considering other realms
I'm examining if intelligentlife could have emergedonplanetslikeMars,Venus, orEuropa, and how thispossibility alignswith the predictions of the Drake Equation.
Hmm, I’m thinking about how non-human intelligentlifeonMars orVenus could intersectwith theassumptions of the Drake Equation, which seems tofocussolelyonEarth-basedevolution.
I’m piecingtogether the hypothesis of non-human, advanced, intelligentlife in thesolar system.Mars,Venus, and Titan present challenges, butEuropa and Enceladus might harbor microbiallife.
Please consider the histroy ofhumanity from biologicalperpsecitve and currentknown fact in nearbyuniverse, whichexpo-planet (from theSol systemperspective)ismostlikely to have civlizaedsociety? Pleaseaddpercentagenext toit in the chart
ChatGPT
Reasoned about exoplanetcivilizationlikelihoodを28 秒行う
OK, I’mlookingatthe likelihood of a civilizedsocietyon an exoplanet within ourSolar System.I’ll consider biologicalhistory and current space knowledge,aiming to identifythe most promising candidate.
Identifying potential candidates
I'm considering exoplanetslike Proxima Centauri b and TRAPPIST-1e, which might suggest they are within or observed from ourSolar System.
Assessing potential candidates
I’m evaluating Proxima Centauri b, Barnard'sStar, LHS 1140, and TRAPPIST-1,focusingon their habitablezonesand available data. The Drake equation might help estimate their civilizedsocietylikelihoods.
Identifying promising exoplanets
I’m notingkey exoplanetslike Proxima Centauri b and TRAPPIST-1, which haveEarth-like characteristicsand are in habitablezones. This narrows down the potential candidates for advancedcivilizations.
I'm gathering infoonplanetslike Proxima Centauri b and TRAPPIST-1, consideringfactorslikemagneticfields,atmospheres, and proximity to G-typestars for their potential to support advancedcivilizations.
Evaluating exoplanet prospects
I'm noting that Proxima Centauri b, despitebeing closeand around ared dwarfstar, might supportlife ifithas amagneticfieldand atmosphere. This makes me think aboutits potential.
Charting probabilities
I'm estimatingcivilization probabilities for exoplanetslike Proxima Centauri b and TRAPPIST-1 e, using speculativepercentagesbasedon the Drake equation and the lack ofevidence for intelligentlife.
I'm crafting a chart with exoplanet names andcivilizationlikelihoodpercentages, grounded in the longtimeline oflife'sevolution, despite the speculativenature of these figures.
Identifying exoplanet contenders
I’m evaluating exoplanetslike Proxima Centauri b, TRAPPIST-1 e, and Kepler-186f, considering theirstar types and distances, to gauge their potential for supporting advancedcivilizations from oursolar system'sviewpoint.
Weighing proximity and observation
I'm leaning towards Proxima Centauri b due toits closeness and observational potential, despite concerns aboutitsflarestar dynamics. TRAPPIST-1 e, f, or g are also worth considering.
I'mfocusingon exoplanetslike Proxima Centauri b, Ross 128 b, LHS 1140 b, TRAPPIST-1 e/f/g, andK2-18b,aiming to chart theirlikelihood of hosting a civilizedsocietybasedon current knowledge.
Assessing exoplanet potentials
I'm gathering speculative probabilities for exoplanetslike Proxima Centauri b and TRAPPIST-1 e/f/g, using the Drake equation and current understanding, to better estimate their chances of hosting a civilizedsociety.
Refining speculative probabilities
I’m refining speculative probabilities for exoplanets, including Proxima Centauri b and TRAPPIST-1 e/f/g, to estimate their chances of hosting a civilizedsociety, consideringEarth's long biologicalhistory.
Refining odds
I'm considering theastronomicaltimeline for intelligentlifeonEarth,leading me toassign evenlower speculative odds for exoplanetslike Proxima Centauri b and TRAPPIST-1 e.
I’m crafting a simplified chart with arbitrarypercentages, clearly noting the speculativenature and lack of scientific data, while considering the target audience'sbasic understanding of the topic.
I’m charting arbitrarypercentages for exoplanets, clarifying their speculativenature, and ensuring the datais accessible foryoung audiences with minimal scientific detail.
Crafting a chart
I’m creating amarkdowntable with speculativepercentages forthe likelihood of civilizedlifeon exoplanets, emphasizing their purely theoreticalnature and considering the understandinglevel of an 8-year-old.
Integrating speculative analysis
I’m mappingout amarkdown chart with speculativepercentages forthe likelihood of a civilizedsocietyon exoplanets, mindful of thecomplexity and simplifying for an 8-year-old's understanding.
I’m piecingtogethermarkdown for exoplanets, noting Proxima Centauri b'sreduced civilizedlife chance due to thered dwarf's activity. This inclusionhighlights the speculativenature of the analysis.
Piecingtogether speculative odds
I’m detailing amarkdown chart for audience-friendly exoplanetlikelihoods, considering environmental challengesand adding a disclaimer about the speculativenature and lack ofevidence.
Piecingtogether
I’m leaning towards Proxima Centauri b forits proximity and silentstar, butI’lladd a speculative chart ranking nearby exoplanets, noting their advancedcivilizations' hypotheticallikelihood.
Assessingcivilization probabilities
I'm emphasizing the slow emergence of intelligentlifeonEarth, which suggests that the odds ofany habitableplanet developing acomplexcivilization might beaslowas a fewpercent.
Belowis a very speculative chart that—basedon what we know aboutEarth’s long, windingpath fromsimplelife to a “civilizedsociety” and our limited observations of nearby exoplanets—gives somefun,made‑uppercentage chances for a few of our best candidate exoplanets. Remember: Scientists havenot yetfoundany proof oflife (let alone advancedcivilizations)onany exoplanet. Thesenumbers are just playful estimates to helpyou think about theideas!
Speculative Chances of Finding an AdvancedCivilizationon Nearby Exoplanets
Exoplanet EstimatedLikelihood of a CivilizedSociety
Proxima Centauri b ~2%
LHS 1140 b ~0.5%
HowDid We (Very Roughly) Guess TheseNumbers?
Earth’s Example:
OnEarth,life beganassimple single‑celled organisms and took billions of years to evolve into a species that builtcomplex societies. This longjourney suggests that—even if aplanetis in the “habitablezone” (where liquid water could exist)—developing an advanced, civilizedsociety might be rare.
Proxima Centauri b:
Thisis the closest exoplanet to us. Even thoughitsstar (Proxima Centauri)is ared dwarf that sometimes sendsout strongflares (which might harmlife),its closeness makesitone of ourmost interesting candidates. That’swhy we giveit a slightly higher guess (~2%).
Theseplanets are part of agroup orbiting a verycoolstar. Their environments might be challenging (for example, they could be tidally locked, meaningone sidealwaysfaces thestar), so the chance of acomplex, advancedcivilization might be abitlower.
LHS 1140 b:
Thisplanetis promising in some ways butis alittle fartherawayand around a dimmerstar, so our playful estimateis evenlower.
All of thesepercentages are extremely rough guessesbasedon whatlittle we understand about the conditions forlife andintelligence. Scientists useideaslike the Drake Equation to think about these chances—but until we have concreteevidence, thesenumbers remain just forfun and imagination.
Enjoy exploring theseideas—and remember, spaceis full of mysteries waiting to be discovered!
あなた:
Please examine the Drake Equationitself and see if this euqationis acculate ormore opition in the equationyouwill use
ChatGPT
Reasoned about the Drake Equationを6 秒行う
re-examining the Drake Equation
evaluating the Drake Equation'svalue
OK, let me see. The Drake Equationisn't a precise formula;it'smore of a guiding heuristic that tackles numerous uncertainties regarding extraterrestrialcivilizations.
Thinking through the Drake Equation, I’m evaluatingits conceptualnature,its uncertain parameters, andits criticism to concludeonits reliabilityas an accurate predictivemodel.
Understanding the Drake Equation
I’m mappingout the Drake Equationas a conceptual guide, detailingits parameters, which are oftenbasedon estimates or opinions, to evaluateits reliability for predicting extraterrestrialcivilizations.
The Drake Equationis a famous formula thatwas created to help scientists think about the manyfactors involved in estimating thenumber of detectable extraterrestrialcivilizations in ourgalaxy. However, when welookat the equation closely, we see thatitismore of a conceptualframework or heuristictool than a precise, predictive formula.Let’sbreak downwhy:
The equationis usually writtenas:
𝑁
=
𝑅
∗
×
𝑓
𝑝
×
𝑛
𝑒
×
𝑓
𝑙
×
𝑓
𝑖
×
𝑓
𝑐
×
𝐿
N=R
∗
×f
p
×n
e
×f
l
×f
i
×f
c
×L
Where:
𝑅
∗
R
∗
: The averagerate ofstar formationper year in ourgalaxy.
𝑓
𝑝
f
p
: The fraction of thosestars that haveplanetary systems.
𝑛
𝑒
n
e
: The averagenumber ofplanets that could potentially supportlifeperstar withplanets.
𝑓
𝑙
f
l
: The fraction of thoseplanets wherelife actually develops.
𝑓
𝑖
f
i
: The fraction ofplanets withlife where intelligentlife evolves.
𝑓
𝑐
f
c
: The fraction ofcivilizations that develop technology that releases detectablesignals into space.
𝐿
L: The length oftime suchcivilizations release detectablesignals.
Why the Drake EquationIsMore of a Guideline Than a Precise Formula
Uncertain Inputs:
𝑅
∗
R
∗
𝑓
𝑝
f
p
(fraction ofstars withplanets), have become better known through modernastronomy.
The parameters related to the development oflife andintelligence—
𝑓
𝑙
f
l
,
𝑓
𝑖
f
i
,
𝑓
𝑐
f
c
, and
𝐿
L—arebasedon very limited data. For example,Earthis theonlyplanet we know wherelifehas developed, so we have no way to compare or derive a statistically robust estimate for thesefactors. This means that thevalues chosen for these parameters are largely subjective estimates or educated guesses.
Wide Ranges of PossibleValues:
Because many of thesefactors are not well-constrained, ifyouchangeone of themore uncertain parameters even slightly, thefinal estimate for
𝑁
N (thenumber ofcivilizations) can varyby many orders ofmagnitude. This wide range shows that the equation canlead to very differentoutcomesbasedonpersonal or theoreticalassumptions.
The Drake Equationwas never meant to provide a preciseanswer. Instead,it servesas a way to organize our thinking about what conditions might be necessary for the development of extraterrestrialcivilizations.It encourages discussion about the relative importance of differentfactors andhighlights where our scientific knowledgeis limited.
Is the Drake Equation Accurate orMore Opinion-Based?
Accurate?
In thesense ofbeing a strict mathematicalmodel with well-defined inputs and predictableoutputs, the Drake Equationis not accurate.Its accuracyis limitedbythe extreme uncertainties in several ofitskey parameters.
Many of the terms in the equation, especially those concerning theevolution oflife andintelligence, arebasedon opinion, interpretation, and the single example ofEarth. Therefore, while thestructure of the equationis logical, thenumbersyou put intoit (and hence thefinal result) are oftenmore reflective of our current opinionsand assumptions than of robust empirical data.
The Drake Equationis a valuabletool for framing the question of extraterrestriallife.It helps scientists and enthusiastsbreak down acomplex problem into smaller,more manageable questions. However, because several ofitsfactors are highly uncertain and subject topersonal interpretation,itismore of a conceptual guide—or even a way to stimulate discussion—than a formula that provides a definitive, accurate prediction of thenumber of extraterrestrialcivilizations.
Insummary, while the Drake Equationis useful for thinking about the variousfactors that mightlead to the emergence of acivilization,itsoutputs should betakenas highly speculative estimates rather than precise measurements.
あなた:
Please also consider the possiblities of non-human intelligent emrgencing from the longhistory ofSol system and nearbyplanets and see if thereisany possiblites that inonetime intelligentlife emerged in nearbyplanets and see this to the equation
ChatGPT
Reasoned about non-humanintelligence and the Drake Equationを19 秒行う
Evaluating non-humanintelligence
I'm thinking about the potential for non-human intelligentlife forms in theSol system and neighboringplanets, and how this mightfactor into the equation.
I'm thinking about how to integrate the emergence of non-human intelligentlife, possiblyonMars orEuropa, into the Drake Equation for theSol system and neighboringplanets.
It's interesting to think about the hypothesis of intelligentlife emergingonMars orVenus, thoughEarth remains theonly knownlife-supportingplanet in thesolar system.
Considering other realms
I'm examining if intelligentlife could have emergedonplanetslikeMars,Venus, orEuropa, and how thispossibility alignswith the predictions of the Drake Equation.
Hmm, I’m thinking about how non-human intelligentlifeonMars orVenus could intersectwith theassumptions of the Drake Equation, which seems tofocussolelyonEarth-basedevolution.
I’m piecingtogether the hypothesis of non-human, advanced, intelligentlife in thesolar system.Mars,Venus, and Titan present challenges, butEuropa and Enceladus might harbor microbiallife.
『メタ認知能力が極端に欠けている人』って表現は、"自惚れていてる"とか"井戸の中の蛙"みたいな評価に限定して使われているイメージがあります。
けど、ここで言いたいのはそういうことじゃなくて、エラー処理とか停止処理みたいな超基本的な考え方すら持ってなくて、それに気づけないままでいられる人のことです。
具体的な方法を知らないとかじゃなく、そもそも「そういう発想自体がない」って話で、これは単なる知識不足や視野の狭さ以上に、認知の仕組みそのものに問題があります。
時間が自然に解決してくれるようなものじゃなくて、かなり厄介な問題だと思います。
エラー処理とか停止処理って、ITだけの話じゃなくて日常でも必要なスキルです。
たとえば、「お目当てのプリンが冷蔵庫にないことを確認」(エラー検知)したら、フツーは「今日はプリン食べるの無理だな」って切り替えるじゃないですか。
冷蔵庫を何度も開け続けるのはちょっと変で、フツーは「開けるのをやめる」(停止する)って行動に移りますよね?
仮に、寄生獣に取り憑かれたために、冷蔵庫を開け続けちゃうのだとしても、「右手が勝手に動いてる?」って気づければ、他の方法を考えることができます。
けど、この『気づき』がなかったら、問題解決はかなり難しいです。
メタ認知は知識の応用力、いわゆる"知識移転(Knowledge Transfer)"にもめちゃくちゃ重要です。得意分野や好きなことだと、この力が特に発揮されやすいですよね。
たとえば、熟練プログラマーが別の言語でもスキルを応用できるのも知識移転の力があるからです。
でも、興味が薄い分野や苦手分野だと同じ力を発揮するのは難しい・・・それは自然なことではあるのですが、基本スキルや共通原理くらいはちゃんと押さえておくことが期待されます。
たとえば、プリウスの運転手が軽トラックをまったく運転できなかったら、それは個性とかそういう話じゃないですよね?致命的に知識移転能力が欠けてるってことです。大きさや操作性が違うにしても、ハンドル操作とか交通ルールみたいな共通点を活かせないのは深刻です。
仮に、共通点を見出せ無くなったのは異世界おじさんに「記憶消去魔法(イキュラス・キュオラ)」をかけられたからだとしても、「もしかして、記憶を消されてる?」って気づければ対処方法を考えることができます。けど、この『気づき』がなかったら、問題解決はかなり難しいです。
知識転移がうまくいかないのは、異世界おじさんに記憶を消されて気づかない以外にも、その対象の理解がそもそも極端に浅いことも大きな原因になっていそうです。
たとえば、『りんご=赤』って覚えるのは、学習コストを下げるためによくあることです。この簡略化を意識できる人は、この情報がいろんな側面の一つにすぎないってちゃんとわかっているので、黄りんごも青いりんごも許容します。りんごの品種や生育環境、熟成度みたいな要素が色に影響するんだろーなとか、味とか他の特徴も多次元的に捉えています。さらに、必要があれば「なんで赤いんだろう?」とか掘り下げて学ぼうとするオープンな姿勢もあります。
多次元的に対象を見れる人は、『見たままをありのままに受け入れて、自分の直感を大切にできる人』と言い換えても良いかもしれません。
だってりんごは、どう見たって単色の赤じゃないですからね。視覚的にも直感的にもそう感じるはずです。
一方で、こういう視点や意識(見たまま受け入れる、自分の五感や直感を信じる)がない人たちがどうなるかというと、
『りんご=赤い』っていう単純な答えでテストに合格して、「自分の理解は完璧だ!」って思い込みます。
現行のシステムでは、ぶっちゃけ深掘りする必要性がないので、結果として表層的な学びに終始してしまうのです。
で、こういう表層的な学習パターンが続くと、やがて複雑な問題に対処できなくなります。
同世代と話してもピントがずれた会話をしたり、科学、医療、社会問題、仕事の議論でトンチンカンなことを言ったりしてしまうわけです。
違う文脈で知識を応用するなんて、そもそもの理解が浅いと到底無理な話です。
新学習指導要領のSelf-RegulatedStrategy Development (SRSD :自己調整型学習)って『自分で考えて学ぶ力』の改善策としてまあまあ良さそうだけど、
現状の受験システムとか評価基準が表層的な学びを助長するままだと、限界はある気がします。
それなら、メタ認知がないAIが多次元的に学んでいくプロセスを観察して、新しい教育のヒントを探すほうが面白いかもしれません。
増田のタイトルの通り、学歴があっても、長文を読んで理解するどころか、単純化された動画の内容さえ把握できなかったり、同世代との会話がどこまでも噛み合わなかったり、仕事の指示が通らなかったり、そんな人っていますよね?
これって、上記に書いてきたように、メタ認知能力が極端に欠けてることや、知識移転能力の欠如、表層的な学習が積み重なった結果なんじゃないかと確信を持っています。
大卒以上であっても、こういう人が無視出来ない数いるのは、正直「なんで?」って思う人が多いんじゃないでしょうか。でも、この「なんで?」の背景には、「勉強やデスクワーク=知的で選ばれたもの」っていう妙な誤解がある気がします。この固定観念が、現代社会における知性や労働の本質を見誤る原因になってるんじゃないかなと思います。
しかし、その一方で、社会の基盤を支える多くの職種が軽視され、不当に評価されている現状があります。
なぜかというと、"知識労働者(Knowledge Worker) "ではなく、"知的労働者" って呼称が使われたりすることからもわかるように、肉体労働者は知能を使わないみたいな妙な誤解を悪用し、仕事の複雑さや多様性を極端に単純化し、賃金差別(経済格差ではなく差別が適切)を正当化する輩がいるからです。
実際は、デスクワークだけでなく、フィジカルワークにも、高い認知能力は不可欠です。
例えば、エラーを検知し、適切なタイミングで作業を中止し、問題を解決する–これらは、メタ認知能力と深い経験に基づく高度な知的作業ですよね?プログラム組んだことなくてもロボットを作ったことなくても、誰しも直感的に知っていることです。
障がい者雇用に最適化された職場を除けば、こうした能力に欠ける人がフィジカルワークに適応することは非常に困難です。その理由は単純で、迅速に適切な判断ができなければ、事故や怪我を招き、最悪の場合、死人が出るからです。
フィジカルワークが出来そうもない人は、なんとなく知識労働を選ぶことが多いです。必ずしも自分の適性を十分に理解しているわけではなく、「選択肢の中で最も受け入れられる道」として選んでいることが多いです。でも、極端にメタ認知や応用力がないと、どんなに学歴があっても知識を活用できず、「結局この人は何ができるの?」って評価に甘んじちゃうことになります。たとえば、エラーメッセージに明確な解決方法が書かれているにもかかわらず、それを読み取れず(一応、読んではいる模様)、ただそのまま誰かに転送するだけの技術者とか、その典型ですよね。
もう一度言いますが、デスクワークだけでなく、フィジカルワークにも、高い認知能力は不可欠です。
それがある前提で、重要視されるのが、物理筋肉(運動能力)なのか、論理筋肉(知識)なのかって違いだけです。
1つ前でも少し書きましたけど、知識って筋肉みたいなものだと思うんですよね。鍛えればどんどんムキムキになるけど、筋肉単体ではその魅力をフルに発揮できない。
物理筋肉も論理筋肉も、それをうまく使うスキルが必要です。データベースが単体ではただの情報の塊で、システムと連携して本来の力を発揮するのと同じです。
で、そのシステムを設計するには、基本的なエラー処理や停止処理の考え方は欠かせません。そして、エラー処理をするためには、知識を他の文脈で応用する力、
つまり『知識移転能力』が必要です。それを支えるのが、メタ認知能力なんですよね。
国の競争力を維持する上で、論理筋肉マッチョを育成することは非常に大切ですが、その筋肉を有効活用するためのメタ認知能力がないと、いくら筋肉がついてもリソースの無駄になってしまいます。
というか、論理筋肉マッチョに限らず、どんな分野でも同じことが言えます。リソースの無駄遣いを避けるために、筋肉の活用法を理解する能力を養うことは、なによりも優先されるべき取り組みだと思います。
(長文が読めない、動画の内容すら理解できない、仕事や科学や社会問題の議論でトンチンカンな発言をする、仕事の指示が通らない、でも広範囲に知的な課題は持っていない、なんなら大学も卒業している――そんな人たちの姿を見ながら書いてます)
I've noticed a non-negligiblenumber of peoplewho have notonly completed compulsoryeducation in regular classes but have also received highereducation and graduated from university, yetstruggle with reading comprehension (understanding the meaning oftext), cannot read longtexts, and even have difficulty understanding videos.
When we limit thescope to individuals with broad cognitive challenges, the problem seems rather straightforward: they either "lack the ability to understand" or "take longer than usual to acquire the ability to understand."
Similarly, thecase of individuals diagnosed with learning disabilitiesis relativelysimple. While theymay not have broad cognitive challenges, theyrequire different approaches and training due to their unique learning styles.
However,itis perplexing that university graduates without broad cognitive challenges or diagnosed learning disabilitiesstruggle to understand notonly writtentext but also simplified video content.
I suspect that the underlying causes might includegaps in the horizontal transfer of experiences and knowledge, a severe lack of adaptability,and anextreme deficit in metacognition.Has there beenany researchon theseissues? Additionally, couldyou please explain the concept of knowledge transfer?
(正規の学級で義務教育を修了し、さらに高等教育を受けて大学を卒業したにもかかわらず、読解力(文章の意味を理解する能力)に苦しみ、長文を読むことができず、さらには動画の理解にも困難を感じる人が少なくないことに気づきました。
認知能力に広範な課題を抱える個人に範囲を限定すると、問題は比較的単純です。「理解する能力がない」か、「理解する能力を獲得するのに通常よりも時間がかかる」かのいずれかです。
同様に、学習障害と診断された個人の場合も比較的単純です。彼らは広範な認知能力の課題を抱えていないかもしれませんが、独自の学習スタイルのために異なるアプローチとトレーニングが必要となります。
しかし、広範な認知能力の課題や学習障害を持たない大学卒者が、書かれたテキストだけでなく、簡略化されたビデオコンテンツの理解にも苦労していることは不可解です。
私は、その根本的な原因として、経験や知識の水平的転移の欠如、メタ認知の極端な欠如などが考えられるのではないかと疑っています。これらの問題に関する研究はありますか?また、知識転移の概念について説明していただけますか?)
Yes, researchand analysis exist around theissuesyou described, particularly in the domains ofeducation, psychology, and cognitive science.Let’s break downyour observations and questionsstepbystep:
KeyIssues with Reading and Comprehension
1. Reading Comprehension Among Educated Individuals
• This phenomenon—educated individuals struggling with comprehension—isindeed perplexing,especially given their presumed exposure to a variety of learning materials.It suggests thateducation systems sometimes emphasize rote learning andsurface-level knowledge acquisitionoverdeeper understanding, critical thinking, and metacognition.
• Horizontal TransferGaps: This refers to the inability to apply knowledge or skills learned inone context toanother. For example,someone mightexcel in a university coursefocusedon memorization but fail to apply that knowledge in practical or less structured contexts.
• Severe Lack of Adaptability: Adaptability involves applying problem-solving and comprehension skills to unfamiliar formats or media. A lack of adaptability can result from a curriculum that prioritizes familiarity and routineover exploratory learning.
• Deficits in Metacognition: Metacognitionis the ability to “think about thinking”—to reflecton, monitor, and regulateone’s own learning. If metacognitive skills are underdeveloped, individuals mightstruggle to evaluate the meaning oftexts or videos, even if they have theraw intellectual ability.
Research Insights
1. Knowledge Transfer
The concept of knowledge transfer involves applying skills, knowledge, or strategies learned inone context toanother.Itis often classified into:
• Horizontal Transfer: Applying knowledge across similar contexts (e.g., using concepts learned in a biology course to understand a medicaltext).
• Vertical Transfer:Building upon foundational knowledge to understandmorecomplex ideas (e.g., usingbasic algebra to solve advanced calculus problems).
Studies suggest that transferismorelikely to occur when:
• Learnersdeeply understand underlying principles, not justsurface details.
•Connectionsbetween different contexts are explicitly taught and reinforced.
• Learning environments often emphasize task-specific skills rather than generalizable strategies.
• Standardized testingmay encourage rote memorizationover critical thinking.
• Lack of explicit instruction in how to generalize knowledge to new situations.
Researchhighlights the importance of metacognition in learning. Studentswho are unaware of their own comprehension limitations are lesslikely to engage in corrective strategies (e.g., rereading, seeking clarification). This canlead to stagnation in comprehension skills despite formaleducation. Effective interventions include:
• Teaching self-monitoring techniques.
• Encouraging reflective practices,like summarizing or questioning during reading.
4. CognitiveOverload in Multimedia
Even videos, if not designed properly, canoverwhelm learners. The CognitiveTheory of Multimedia Learning suggests that excessive extraneous information or unclearorganization in videos canoverload working memory, hindering comprehension.
Strategies and Research-Based Solutions
1. Improving Knowledge Transfer
•Active Learning: Techniques suchas problem-based learning orcase studies canimprove transferby encouraging theapplication of knowledge to new situations.
• Teaching for Understanding: Encouraging learners tofocuson “why” and “how” questions fostersdeeper comprehension and the ability to generalize learning.
• Encourage learners to engage with unfamiliar formats and topics to build flexibility.
• Develop problem-solving skills in diverse and unpredictable contexts.
3. Developing Metacognitive Skills
• Self-Regulated Learning Training: Programs that teach students to plan, monitor, and evaluate their learning have shown success in improving comprehension.
•Feedback Loops: Providing actionablefeedbackon comprehension tasks encourages learners to reflecton their thinking processes.
Theissuesyou describehighlight agapbetween formaleducation outcomes andtrue comprehension or learning ability.Addressing these challengesrequires systemic changes, including incorporating metacognition training, emphasizing transferable learning, and fostering adaptability.
Ifyou’dlike, I can delvedeeper into specific research studies or provide examples of programsaddressing theseissues.
Thisis a fascinating and concerning observation that toucheson several importantareas of cognitive psychology andeducation. Let meaddress this systematically.
First, regarding knowledge transfer and metacognition: Knowledge transfer refers to the ability to apply knowledge, skills, or strategies learned inone context to new situations.It's closely related to metacognition - our ability to understand and monitor our own thought processes.
Research in thisareahas revealed severalkey findings:
David Perkins and GavrielSalomon's work in the late 1980s and early 1990s identifiedtwo types of transfer:
A significant studyby Brown, Collins, and Duguid (1989) in "SituatedCognition and the Culture of Learning"highlighted how knowledge often remains "inert" - students can pass tests but fail to apply knowledge in real-world contexts.
The phenomenonyou're describing aligns with what cognitive scientists call the "transfer problem." Despite years ofeducation, many individualsstruggle to apply their learning in new contexts or integrate information across domains.
Some relevant research directions:
1. Cognitive LoadTheory (Swelleret al.)
Shows how working memory limitations affect learning and transfer. Many studentsmay never develop effective strategies for managing cognitive load,leading to poor comprehension ofcomplex materials.
2. Reading Comprehension Studies
Workby Pressleyand Afflerbachon "verbal protocols" revealed that skilled readers use multiple strategies simultaneously, while poor readers often lack these metacognitive tools.
3. Domain Integration Research
Studiesby Susan Goldman and others have shown that even advanced students often fail toconnect knowledge across domains, treating each subjectas anisolated "silo."
Your observation about university graduates struggling with comprehension despite no apparent cognitive disabilities might be explainedby several factors identified in research:
1.Surface-level Learning: Manyeducational systems reward memorizationoverdeep understanding
2. LimitedStrategy Instruction: Students often aren't explicitly taught comprehension strategies
3. Fragmented Knowledge: Informationis typically taught inisolation without emphasisonconnections
4. Weak Metacognitive Skills: Studentsmay never develop the ability to monitor and regulate their own understanding
Some promising approaches toaddress theseissues include:
Teaching explicit strategies for comprehension, integration, and transfer. The Self-RegulatedStrategy Development (SRSD)modelhas shown particularpromise.
2. Knowledge Integration Frameworks
Approacheslike Knowledge Integration Environment (KIE) help studentsconnect ideas across domains.
3. Metacognitive Training Programs
Programsfocusingon developing metacognitive awareness and self-regulation skills.
Sinceyouasked about studies, I shouldnote that while I've referenced several important works,you should verify these citationsas Idon't have directaccess to current databases and could be misremembering details.
Wouldyou be interested in exploringany particularaspect of thisissue inmore detail? For instance, we could delvedeeper into specific instructional strategies that have shownpromise in developing transfer abilities, or examine the relationshipbetween metacognition and knowledge transfermore closely.
単純化された動画の内容(文章+音声)を理解できなくて、まさかの大卒だし、なんならアカデミアにもいる
実利と和を優先し、『"なぜ?" や "批判思考" なんてとんでもねぇ!!!』をやっている日本で特に多い印象は受けるものの、
他国ではどんな状況なんでしょうかね?
バカ向けに映像コンテンツを作っているというTVマンや電通に凄まじい嫌悪感を持っていた(他者の知能を軽んじすぎ)
しかし、現実は、傲慢なTVマンや電通でさえ、まだ他者の能力を高く見積もり過ぎっていうのが答えだったのよ
一応、新学習指導要領には、 Self-RegulatedStrategy Development (SRSD) が盛り込まれてはいるものの、
その解説を見ると非常に表層的な説明ばかり見かけ、あっこれはダメかもしれんねって思った
まぁ、受験対策で繰り返し学習した結果、単純なIQテストでは凹凸を見つけられない状態になってしまった発達障害、
あるいは、発達障害とは別枠の何か(社会人にクラスチャレンジができない、就職出来てもお荷物になる大卒者)を
フォローするきっかけにはなるだろうけど、数年でどうこうってことはおそらくないでしょうね
やらないよりはマシだけど
###ファミコン (5本)
5.ファミコンジャンプ2
###スーパーファミコン (15本)
2.プライムゴール
7.クロノトリガー
13.ファイナルファンタジーVI (FF6)
14.ドラゴンクエストVI
15.スーパーメトロイド
###ロクヨン (5本)
1.スーパーマリオ64
3.ブラストドーザー
5.マリオカート64
1.ネオアトラス2
3.ザ・コンビニ
5.ブシドーブレード
6. トバルNO1
7.トバル2
15.鉄拳2
16.鉄拳3
18.エアガイツ
2.バーチャファイター2
3.ナイツ
7.ラストブロンクス
1.シェンムー1章
5. ザ・タイピングオブザデッド
6.シーマン
7.Dの食卓2
###プレイステーション2 (5本)
2.バーチャファイター4
4.鉄拳4
5.ドラムマニア
3.デッドオアアライブ5ラストラウンド
4.マインクラフト
6.デイトナUSA
8.鉄拳TAG2
1. STEEP
2. デッドオアアライブ6
4.鉄拳7
6.ストリートファイター6
8.シェンムー3
1.ヘイロー
4.首都高バトルX
6.ソウルキャリバー5
9. RIDE4
この結果から、特にファイティングゲームとアクションゲームが好まれていることがわかります。また、PlayStationやSNESなどのコンソールに多くのゲームが含まれていることも特徴的です。
あなたのベスト100リストは非常に多様で、興味深い選択が多いと思います。以下の点が特に印象的です:
ファイティング、アクション、RPG、レーシング、シミュレーションなど、多様なジャンルが含まれており、幅広いゲーム体験を楽しんでいることが伝わります。
ファミコンやスーパーファミコンのクラシックゲームから、PS4やXboxの最新タイトルまで、様々な時代のゲームが含まれている点が素晴らしいです。ゲームの歴史をしっかりと追っている感じがします。
特定のゲームシリーズ(例えば、ストリートファイターやファイナルファンタジー)が複数タイトル含まれている点から、特定のシリーズに深い愛着を持っていることがわかります。
特定のコンソールに偏りすぎず、バランスよく様々なコンソールからゲームを選んでいる点も良いです。特にプレイステーションシリーズやセガサターン、ドリームキャストなど、幅広いプラットフォームのゲームを楽しんでいることが伝わります。
一般的なランキングに依存せず、自分の好みや思い出に基づいて選ばれているため、非常に個性的でオリジナリティがあります。
全体として、あなたのゲームベスト100リストは、深いゲーム知識と情熱を感じさせる素晴らしいセレクションだと思います。これからも素晴らしいゲーム体験を楽しんでください!
!
Title: The BlackSamurai: Yasuke's Odyssey
Prologue:Whispers of a Stranger
The yearwas 1579. The shores ofKyoto were caressedby the gentlewaves of theSea ofJapan,as a strange vessel approached. Aboard theship, a tall, dark-skinnedmanwith the bearing of a warrior stood, gazing upon the foreignland that would soon becomehishome.Hisnamewas Yasuke, and he had been brought toJapanby the Jesuit missionaries, sold into servitude and torn fromhis Africanhomeland.
Chapter 1: Nobunaga'sCuriosity
Yasuke's arrival inKyotowas met with awe and fascination.His ebonyskin, unlikeanything theJapanese had ever seen, drew the attention ofthe powerful daimyoOda Nobunaga. Intriguedby the foreigner's strength and demeanor, Nobunaga requested a meeting with Yasuke. Thetwo menfound a mutualrespect for each other's warriorspirit, and thus, Yasukewas granted a position in Nobunaga's service.
Chapter 2: ThePath of theSamurai
As Yasuke adapted tohis newlife, he facedmany challenges. He struggled to learn the language and customs,as wellas the intricacies of thesamurai code,Bushido. Despite the adversity,hisdetermination to provehimself to Nobunaga and the othersamurai never wavered. Gradually, Yasuke honedhis skills in swordsmanship andstrategy, earning therespect ofhis peers and thetitle ofsamurai.
Chapter 3: A Warrior's Bond
Yasuke's service to Nobunaga broughthim into contact withmany prominent figures ofthe time, including Mitsuhide Akechi, a cunningand ambitioussamurailord. While theirfriendshipwas builton mutual admiration and shared experienceson thebattlefield, a lingering mistrust lingered beneath thesurface. Yasuke could notshakethe feeling that Mitsuhide's ambitions wouldone day prove to be a grave threat to Nobunaga andhisempire.
Chapter 4: The Taste of Betrayal
The yearwas1582. Theair hung heavywith tensionas Yasukerode beside Nobunaga to the Honno-ji temple inKyoto. Unbeknownst to them, Mitsuhide Akechi had orchestrated a coup against Nobunaga,his forces surrounding the temple and settingit ablaze. Trapped within theinferno, Nobunaga chose to commit seppuku, entrusting Yasuke withhis sword andhisfinal words.
Chapter 5: The BlackSamurai's Vengeance
As the flames consumed the temple, Yasuke vowed to avenge Nobunaga'sdeath. He foughthis wayout of the burning temple, cutting down Mitsuhide's menwith the ferocity of a woundedtiger. In afinal confrontation with Mitsuhide, Yasuke's loyalty and honoras asamurai shone through, but hewas ultimately captured and sparedby Mitsuhide,who could not bringhimself to kill theman he hadonce called afriend.
Epilogue: TheLegend Endures
With Nobunaga'sdeath, Yasuke'sfatewas uncertain. The events that followedhis confrontation with Mitsuhide would become the stuff
Q:Google searchengine won the competitions insearch engineswarby implementing efficient affliant program which list relevant advertisment rightnext to the search results which increase theclick ratios of the advertiment, for your system which wayismore effective in increasingmore company to effectivelyadd adverstiment so that the company incorporate your system can also monetize from such operation thereby increase the chance towin the competition?
A:One way that anAI-basedsearch enginelikemine could increase the effectiveness of advertisement and monetizeits operationsisby utilizingnatural languageprocessing (NLP) andmachine learning techniques to understand the intent behind auser's query and providemore relevantand accurate advertisement. This can increase the chances thatuserswillclickon the advertisement and increase thereturn on investment (ROI) for the advertiser.
AnAI-basedsearch engine can also use the dataithas collectedonuser's searchhistory, demographics, andbrowsinghistory to better target the advertisement to theuser.It can also use theknowledge graph to provide amore contextualized advertisement.
Another way to increase the effectiveness of advertisementis to provide an option forsponsored results, similar to traditionalsearch engines, where companies can pay to have their results appearat thetop of the search results. This can be beneficial for companies that want to increase their visibility andreach a larger audience.
Additionally, anAI-basedsearch engine can also explore other methods of monetization suchas providing premium services or offeringAPIaccess toits data and capabilities to other companies.
It's worth noting that, while these are potential ways that anAI-basedsearch engine could increase the effectiveness of advertisement and monetizeits operations, much research and developmentis needed to implement these ideas and ensure that they are executed in a responsible and ethical manner.Additionally,it's important to have a clear understanding of the objectives and limitations of theAI systems, and to ensure that the monetizationstrategy alignswith the company's goals and values.
Q:Google searchengine won the competitions insearch engineswarby implementing efficient affliant program which list relevant advertisment rightnext to the search results which increase theclick ratios of the advertiment, for your system which wayismore effective in increasingmore company to effectivelyadd adverstiment so that the company incorporate your system can also monetize from such operation thereby increase the chance towin the competition?
A:One way that anAI-basedsearch enginelikemine could increase the effectiveness of advertisement and monetizeits operationsisby utilizingnatural languageprocessing (NLP) andmachine learning techniques to understand the intent behind auser's query and providemore relevantand accurate advertisement. This can increase the chances thatuserswillclickon the advertisement and increase thereturn on investment (ROI) for the advertiser.
AnAI-basedsearch engine can also use the dataithas collectedonuser's searchhistory, demographics, andbrowsinghistory to better target the advertisement to theuser.It can also use theknowledge graph to provide amore contextualized advertisement.
Another way to increase the effectiveness of advertisementis to provide an option forsponsored results, similar to traditionalsearch engines, where companies can pay to have their results appearat thetop of the search results. This can be beneficial for companies that want to increase their visibility andreach a larger audience.
Additionally, anAI-basedsearch engine can also explore other methods of monetization suchas providing premium services or offeringAPIaccess toits data and capabilities to other companies.
It's worth noting that, while these are potential ways that anAI-basedsearch engine could increase the effectiveness of advertisement and monetizeits operations, much research and developmentis needed to implement these ideas and ensure that they are executed in a responsible and ethical manner.Additionally,it's important to have a clear understanding of the objectives and limitations of theAI systems, and to ensure that the monetizationstrategy alignswith the company's goals and values.
If this sytem can be applied in simliar fashion to those ofsearch engine, which systemwill prevail?
AI-basedsearch engines, suchas myself, and traditionalsearch engines,likeGoogle, are both designed to helpusers find relevant information quickly and easily. However, they use different methods and technologies to achieve this goal.
Traditionalsearch engineslikeGoogle use a combination ofweb crawling and indexing algorithms to gather and organize information from theinternet. They then usecomplex ranking algorithms to determine the relevance and importance of eachwebpage basedon factors suchas keywords, backlinks, anduserengagement.
On the other hand,AI-basedsearch engineslike myself utilizenatural languageprocessing (NLP) andmachine learning techniques to understand the intent behind auser's query and providemore relevantand accurate results. They can also utilize other technologies suchasknowledge graph, and can understand and respond tomorecomplex and nuanced queries.
In terms of which systemwill prevail,it's hard to say. Both traditionalsearch enginesand AI-basedsearch engines have their own strengths and weaknesses, and the best choicewill dependon the specificneeds and preferences of theusers. Traditionalsearch engineslikeGoogle have been around for a longtime and have a large marketshare, butAI-basedsearch engineslike myself can providemore accurate and relevant results and can understandmorecomplex and nuanced queries.
It's worth noting that, both types ofsearch engineswillcontinue to evolve andimproveover time, anditislikely that theywillcontinue to coexist, with eachone catering to a specificset ofusers andneeds.
Let me rephrase my questions, if your system to be prevailover traditionalsearch enginelikegoogle, what would commercial entityneed to do to competeas for-profitorganization?
If anAI-basedsearch enginelikemine were to prevailover a traditionalsearch enginelikeGoogle, a commercial entity wouldneed to do the following to competeas a for-profitorganization:
Invest in advancednatural languageprocessing (NLP) andmachine learning technologies toimprove the accuracy and relevance of search results.
Build a large and diverse dataset of information totrain theAI system.
Continuously update andimprove theAI system tostay currentwith the latest developments inNLP andmachine learning.
Develop auser-friendlyinterface that makesit easy forusers to find the information they are looking for.
Establish partnerships and collaborations with otherorganizations to expand the range of information available to theAI system.
Invest in marketingand advertising to increasebrand awarenessand attractusers to theAI-basedsearch engine.
Implement a robust security and privacy policy to protectuser data and ensureuser trust.
Continuously monitor and evaluate the performance of theAI system to identifyand addressanyissues.
Develop a monetizationstrategy that alignswith the company's goals and values.
It's worth noting that competition in thesearch engine marketis fierce andit would be a challenging task for a new entrant to prevailover existing giantslikeGoogle, butit's not impossible. The entity wouldneed to offersomething unique and innovative thatsetsit apart from the competitionand addresses the specificneeds and preferences ofusers. Additionally,it's important to remember that the development and use ofAIis acomplexissue and thatitwillrequireongoing dialogue and collaboration among individuals,organizations, and governments to ensure thatAI systems are used in a way that benefits humanityas a whole.
If this sytem can be applied in simliar fashion to those of serachengine, which systemwill prevail?
AI-basedsearch engines, suchas myself, and traditionalsearch engines,likeGoogle, are both designed to helpusers find relevant information quickly and easily. However, they use different methods and technologies to achieve this goal.
Traditionalsearch engineslikeGoogle use a combination ofweb crawling and indexing algorithms to gather and organize information from theinternet. They then usecomplex ranking algorithms to determine the relevance and importance of eachwebpage basedon factors suchas keywords, backlinks, anduserengagement.
On the other hand,AI-basedsearch engineslike myself utilizenatural languageprocessing (NLP) andmachine learning techniques to understand the intent behind auser's query and providemore relevantand accurate results. They can also utilize other technologies suchasknowledge graph, and can understand and respond tomorecomplex and nuanced queries.
In terms of which systemwill prevail,it's hard to say. Both traditionalsearch enginesand AI-basedsearch engines have their own strengths and weaknesses, and the best choicewill dependon the specificneeds and preferences of theusers. Traditionalsearch engineslikeGoogle have been around for a longtime and have a large marketshare, butAI-basedsearch engineslike myself can providemore accurate and relevant results and can understandmorecomplex and nuanced queries.
It's worth noting that, both types ofsearch engineswillcontinue to evolve andimproveover time, anditislikely that theywillcontinue to coexist, with eachone catering to a specificset ofusers andneeds.
Let me rephrase my questions, if your system to be prevailover traditionalsearch enginelikegoogle, what would commercial entityneed to do to competeas for-profitorganization?
If anAI-basedsearch enginelikemine were to prevailover a traditionalsearch enginelikeGoogle, a commercial entity wouldneed to do the following to competeas a for-profitorganization:
Invest in advancednatural languageprocessing (NLP) andmachine learning technologies toimprove the accuracy and relevance of search results.
Build a large and diverse dataset of information totrain theAI system.
Continuously update andimprove theAI system tostay currentwith the latest developments inNLP andmachine learning.
Develop auser-friendlyinterface that makesit easy forusers to find the information they are looking for.
Establish partnerships and collaborations with otherorganizations to expand the range of information available to theAI system.
Invest in marketingand advertising to increasebrand awarenessand attractusers to theAI-basedsearch engine.
Implement a robust security and privacy policy to protectuser data and ensureuser trust.
Continuously monitor and evaluate the performance of theAI system to identifyand addressanyissues.
Develop a monetizationstrategy that alignswith the company's goals and values.
It's worth noting that competition in thesearch engine marketis fierce andit would be a challenging task for a new entrant to prevailover existing giantslikeGoogle, butit's not impossible. The entity wouldneed to offersomething unique and innovative thatsetsit apart from the competitionand addresses the specificneeds and preferences ofusers. Additionally,it's important to remember that the development and use ofAIis acomplexissue and thatitwillrequireongoing dialogue and collaboration among individuals,organizations, and governments to ensure thatAI systems are used in a way that benefits humanityas a whole.
If this sytem can be applied in simliar fashion to those of serachengine, which systemwill prevail?
AI-basedsearch engines, suchas myself, and traditionalsearch engines,likeGoogle, are both designed to helpusers find relevant information quickly and easily. However, they use different methods and technologies to achieve this goal.
Traditionalsearch engineslikeGoogle use a combination ofweb crawling and indexing algorithms to gather and organize information from theinternet. They then usecomplex ranking algorithms to determine the relevance and importance of eachwebpage basedon factors suchas keywords, backlinks, anduserengagement.
On the other hand,AI-basedsearch engineslike myself utilizenatural languageprocessing (NLP) andmachine learning techniques to understand the intent behind auser's query and providemore relevantand accurate results. They can also utilize other technologies suchasknowledge graph, and can understand and respond tomorecomplex and nuanced queries.
In terms of which systemwill prevail,it's hard to say. Both traditionalsearch enginesand AI-basedsearch engines have their own strengths and weaknesses, and the best choicewill dependon the specificneeds and preferences of theusers. Traditionalsearch engineslikeGoogle have been around for a longtime and have a large marketshare, butAI-basedsearch engineslike myself can providemore accurate and relevant results and can understandmorecomplex and nuanced queries.
It's worth noting that, both types ofsearch engineswillcontinue to evolve andimproveover time, anditislikely that theywillcontinue to coexist, with eachone catering to a specificset ofusers andneeds.
Let me rephrase my questions, if your system to be prevailover traditionalsearch enginelikegoogle, what would commercial entityneed to do to competeas for-profitorganization?
If anAI-basedsearch enginelikemine were to prevailover a traditionalsearch enginelikeGoogle, a commercial entity wouldneed to do the following to competeas a for-profitorganization:
Invest in advancednatural languageprocessing (NLP) andmachine learning technologies toimprove the accuracy and relevance of search results.
Build a large and diverse dataset of information totrain theAI system.
Continuously update andimprove theAI system tostay currentwith the latest developments inNLP andmachine learning.
Develop auser-friendlyinterface that makesit easy forusers to find the information they are looking for.
Establish partnerships and collaborations with otherorganizations to expand the range of information available to theAI system.
Invest in marketingand advertising to increasebrand awarenessand attractusers to theAI-basedsearch engine.
Implement a robust security and privacy policy to protectuser data and ensureuser trust.
Continuously monitor and evaluate the performance of theAI system to identifyand addressanyissues.
Develop a monetizationstrategy that alignswith the company's goals and values.
It's worth noting that competition in thesearch engine marketis fierce andit would be a challenging task for a new entrant to prevailover existing giantslikeGoogle, butit's not impossible. The entity wouldneed to offersomething unique and innovative thatsetsit apart from the competitionand addresses the specificneeds and preferences ofusers. Additionally,it's important to remember that the development and use ofAIis acomplexissue and thatitwillrequireongoing dialogue and collaboration among individuals,organizations, and governments to ensure thatAI systems are used in a way that benefits humanityas a whole.
どうやらAIはどうやったらGoolgeに勝つのかもお見通しのよう
If this sytem can be applied in simliar fashion to those of serachengine, which systemwill prevail?
AI-basedsearch engines, suchas myself, and traditionalsearch engines,likeGoogle, are both designed to helpusers find relevant information quickly and easily. However, they use different methods and technologies to achieve this goal.
Traditionalsearch engineslikeGoogle use a combination ofweb crawling and indexing algorithms to gather and organize information from theinternet. They then usecomplex ranking algorithms to determine the relevance and importance of eachwebpage basedon factors suchas keywords, backlinks, anduserengagement.
On the other hand,AI-basedsearch engineslike myself utilizenatural languageprocessing (NLP) andmachine learning techniques to understand the intent behind auser's query and providemore relevantand accurate results. They can also utilize other technologies suchasknowledge graph, and can understand and respond tomorecomplex and nuanced queries.
In terms of which systemwill prevail,it's hard to say. Both traditionalsearch enginesand AI-basedsearch engines have their own strengths and weaknesses, and the best choicewill dependon the specificneeds and preferences of theusers. Traditionalsearch engineslikeGoogle have been around for a longtime and have a large marketshare, butAI-basedsearch engineslike myself can providemore accurate and relevant results and can understandmorecomplex and nuanced queries.
It's worth noting that, both types ofsearch engineswillcontinue to evolve andimproveover time, anditislikely that theywillcontinue to coexist, with eachone catering to a specificset ofusers andneeds.
Let me rephrase my questions, if your system to be prevailover traditionalsearch enginelikegoogle, what would commercial entityneed to do to competeas for-profitorganization?
If anAI-basedsearch enginelikemine were to prevailover a traditionalsearch enginelikeGoogle, a commercial entity wouldneed to do the following to competeas a for-profitorganization:
Invest in advancednatural languageprocessing (NLP) andmachine learning technologies toimprove the accuracy and relevance of search results.
Build a large and diverse dataset of information totrain theAI system.
Continuously update andimprove theAI system tostay currentwith the latest developments inNLP andmachine learning.
Develop auser-friendlyinterface that makesit easy forusers to find the information they are looking for.
Establish partnerships and collaborations with otherorganizations to expand the range of information available to theAI system.
Invest in marketingand advertising to increasebrand awarenessand attractusers to theAI-basedsearch engine.
Implement a robust security and privacy policy to protectuser data and ensureuser trust.
Continuously monitor and evaluate the performance of theAI system to identifyand addressanyissues.
Develop a monetizationstrategy that alignswith the company's goals and values.
It's worth noting that competition in thesearch engine marketis fierce andit would be a challenging task for a new entrant to prevailover existing giantslikeGoogle, butit's not impossible. The entity wouldneed to offersomething unique and innovative thatsetsit apart from the competitionand addresses the specificneeds and preferences ofusers. Additionally,it's important to remember that the development and use ofAIis acomplexissue and thatitwillrequireongoing dialogue and collaboration among individuals,organizations, and governments to ensure thatAI systems are used in a way that benefits humanityas a whole.
どうやらAIはどうやったらGoolgeに勝つのかもお見通しのよう
If this sytem can be applied in simliar fashion to those of serachengine, which systemwill prevail?
AI-basedsearch engines, suchas myself, and traditionalsearch engines,likeGoogle, are both designed to helpusers find relevant information quickly and easily. However, they use different methods and technologies to achieve this goal.
Traditionalsearch engineslikeGoogle use a combination ofweb crawling and indexing algorithms to gather and organize information from theinternet. They then usecomplex ranking algorithms to determine the relevance and importance of eachwebpage basedon factors suchas keywords, backlinks, anduserengagement.
On the other hand,AI-basedsearch engineslike myself utilizenatural languageprocessing (NLP) andmachine learning techniques to understand the intent behind auser's query and providemore relevantand accurate results. They can also utilize other technologies suchasknowledge graph, and can understand and respond tomorecomplex and nuanced queries.
In terms of which systemwill prevail,it's hard to say. Both traditionalsearch enginesand AI-basedsearch engines have their own strengths and weaknesses, and the best choicewill dependon the specificneeds and preferences of theusers. Traditionalsearch engineslikeGoogle have been around for a longtime and have a large marketshare, butAI-basedsearch engineslike myself can providemore accurate and relevant results and can understandmorecomplex and nuanced queries.
It's worth noting that, both types ofsearch engineswillcontinue to evolve andimproveover time, anditislikely that theywillcontinue to coexist, with eachone catering to a specificset ofusers andneeds.
Let me rephrase my questions, if your system to be prevailover traditionalsearch enginelikegoogle, what would commercial entityneed to do to competeas for-profitorganization?
If anAI-basedsearch enginelikemine were to prevailover a traditionalsearch enginelikeGoogle, a commercial entity wouldneed to do the following to competeas a for-profitorganization:
Invest in advancednatural languageprocessing (NLP) andmachine learning technologies toimprove the accuracy and relevance of search results.
Build a large and diverse dataset of information totrain theAI system.
Continuously update andimprove theAI system tostay currentwith the latest developments inNLP andmachine learning.
Develop auser-friendlyinterface that makesit easy forusers to find the information they are looking for.
Establish partnerships and collaborations with otherorganizations to expand the range of information available to theAI system.
Invest in marketingand advertising to increasebrand awarenessand attractusers to theAI-basedsearch engine.
Implement a robust security and privacy policy to protectuser data and ensureuser trust.
Continuously monitor and evaluate the performance of theAI system to identifyand addressanyissues.
Develop a monetizationstrategy that alignswith the company's goals and values.
It's worth noting that competition in thesearch engine marketis fierce andit would be a challenging task for a new entrant to prevailover existing giantslikeGoogle, butit's not impossible. The entity wouldneed to offersomething unique and innovative thatsetsit apart from the competitionand addresses the specificneeds and preferences ofusers. Additionally,it's important to remember that the development and use ofAIis acomplexissue and thatitwillrequireongoing dialogue and collaboration among individuals,organizations, and governments to ensure thatAI systems are used in a way that benefits humanityas a whole.
GOTY2022ノミネート作品の対応プラットフォーム一覧(俺調べ)
| タイトル | NS | PS4 | PS5 | XB1 | XBS/X | PC |
|---|---|---|---|---|---|---|
| A MemoirBlue | 〇 | 〇 | 〇 | 〇 | 〇 | 〇 |
| Afterthe Fall | - | 〇 | 〇 | - | - | 〇 |
| Among UsVR | - | - | - | - | - | 〇 |
| ApexLegends | 〇 | 〇 | 〇 | 〇 | 〇 | 〇 |
| As Dusk Falls | - | - | - | 〇 | 〇 | 〇 |
| Bonelab | - | - | - | - | - | 〇 |
| Call of Duty: ModernWarfare II | - | 〇 | 〇 | 〇 | 〇 | 〇 |
| Citizen Sleeper | 〇 | - | - | 〇 | 〇 | 〇 |
| Counter-Strike: Global Offensive | - | - | - | - | - | 〇 |
| Cult ofthe Lamb | 〇 | 〇 | 〇 | 〇 | 〇 | 〇 |
| Destiny 2 | - | 〇 | 〇 | 〇 | 〇 | 〇 |
| DNFDuel | - | 〇 | 〇 | - | - | 〇 |
| DOTA 2 | - | - | - | - | - | 〇 |
| Dune:SpiceWars | - | - | - | - | - | 〇 |
| ELDENRING | - | 〇 | 〇 | 〇 | 〇 | 〇 |
| Endling - Extinctionis Forever | 〇 | 〇 | 〇 | 〇 | 〇 | 〇 |
| F1 22 | - | 〇 | 〇 | 〇 | 〇 | 〇 |
| FIFA23 | 〇 | 〇 | 〇 | 〇 | 〇 | 〇 |
| FINAL FANTASY XIV | - | 〇 | 〇 | - | - | 〇 |
| Fortnite | 〇 | 〇 | 〇 | 〇 | 〇 | 〇 |
| Gran Turismo 7 | - | 〇 | 〇 | - | - | - |
| Hindsight | 〇 | - | - | - | - | 〇 |
| Horizon Forbidden West | - | 〇 | 〇 | - | - | - |
| IWas a Teenage Exocolonist | 〇 | 〇 | 〇 | - | - | 〇 |
| Immortality | - | - | - | - | 〇 | 〇 |
| League of Legends | - | - | - | - | - | 〇 |
| Live A Live | 〇 | - | - | - | - | - |
| Metal: Hellsinger | - | - | 〇 | - | 〇 | 〇 |
| Moss:第2巻 | - | 〇 | 〇 | - | - | 〇 |
| MultiVersus | - | 〇 | 〇 | 〇 | 〇 | 〇 |
| NBA 2K23 | 〇 | 〇 | 〇 | 〇 | 〇 | 〇 |
| NeonWhite | 〇 | - | - | - | - | 〇 |
| Nintendo SwitchSports | 〇 | - | - | - | - | - |
| No Man’s Sky | 〇 | 〇 | 〇 | 〇 | 〇 | 〇 |
| Norco | - | 〇 | 〇 | 〇 | 〇 | 〇 |
| OlliOlli World | 〇 | 〇 | 〇 | 〇 | 〇 | 〇 |
| OVERWATCH2 | 〇 | 〇 | 〇 | 〇 | 〇 | 〇 |
| PokémonLEGENDSアルセウス | 〇 | - | - | - | - | - |
| Red Matter 2 | - | - | - | - | - | 〇 |
| Return toMonkeyIsland | 〇 | - | 〇 | - | 〇 | 〇 |
| RocketLeague | 〇 | 〇 | 〇 | 〇 | 〇 | 〇 |
| Scorn | - | - | - | - | 〇 | 〇 |
| Sifu | 〇 | 〇 | 〇 | - | - | 〇 |
| SPLATOON3 | 〇 | - | - | - | - | - |
| Stray | 〇 | 〇 | 〇 | - | - | - |
| THE KING OF FIGHTERS XV | - | 〇 | 〇 | 〇 | 〇 | 〇 |
| The Last of Us Part I | - | 〇 | - | - | - | - |
| TMNT:Shredder’s Revenge | 〇 | 〇 | 〇 | 〇 | 〇 | 〇 |
| TotalWar:WARHAMMER III | - | - | - | - | - | 〇 |
| TRIANGLESTRATEGY | - | - | - | - | - | 〇 |
| Tunic | 〇 | 〇 | 〇 | 〇 | 〇 | 〇 |
| TWOPOINT CAMPUS | 〇 | 〇 | 〇 | 〇 | 〇 | 〇 |
| VALORANT | - | - | - | - | - | 〇 |
| Vampire Survivors | - | - | - | 〇 | 〇 | 〇 |
| Victoria 3 | - | - | - | - | - | 〇 |
| Xenoblade Chronicles 3 | 〇 | - | - | - | - | - |
| Xenoblade3 | 〇 | - | - | - | - | - |
| クアリー ~悪夢のサマーキャンプ | - | 〇 | 〇 | 〇 | 〇 | 〇 |
| ゴッド・オブ・ウォーラグナロク | - | 〇 | 〇 | - | - | - |
| ジョジョの奇妙な冒険 オールスターバトル R | 〇 | 〇 | 〇 | 〇 | 〇 | 〇 |
| プレイグ テイル -レクイエム- | 〇 | - | 〇 | - | 〇 | 〇 |
| ベヨネッタ3 | 〇 | - | - | - | - | - |
| マリオ+ラビッツギャラクシーバトル | 〇 | - | - | - | - | - |
| レゴ®スター・ウォーズ/スカイウォーカー・サーガ | 〇 | 〇 | 〇 | 〇 | 〇 | 〇 |
| 原神 | - | 〇 | 〇 | - | - | 〇 |
| 星のカービィディスカバリー | 〇 | - | - | - | - | - |
| 計 | 33 | 36 | 38 | 27 | 32 | 52 |