
はてなキーワード:RDBとは
2025年、私たちはソフトウェア開発の歴史的な転換点に立っている。大規模言語モデル(LLM)の進化は、GitHub Copilotのようなコード補完ツールに始まり、今や「何を作りたいか」を自然言語で伝えるだけで、アプリケーションの雛形が数分で生成される時代を現実のものとしつつある。この光景を目の当たりにした多くのプログラマが、漠然とした、しかし確かな不安を抱いているだろう。「私たちの仕事は、いずれAIに奪われるのではないか」と。
この問いに対する私の答えは、半分はYesであり、もう半分はNoだ。より正確に言えば、プログラマの仕事の本質が、歴史上かつてないレベルで抽象化され、その役割が再定義されるのだ。私たちは、コードを「書く」作業から解放される一方で、これまで以上に高度な思考を要求されることになる。
本稿では、プログラミングの歴史を「How(いかに作るか)」から「What(何を作るか)」への移行として捉え直し、LLMがこの流れをいかに加速させるかを論じる。そして、その先にある、AIには決して代替できない、人間ならではの競争優位性、すなわち「Why(なぜ作るのか)」を定義し、記述する能力の重要性について深く考察していく。これは、単なる未来予測ではない。今を生きるすべてのソフトウェアエンジニアにとっての、生存戦略の提示である。
LLMの登場を特異点として捉える前に、我々が立っている場所を正確に知る必要がある。ソフトウェア開発の歴史は、常に「抽象化」との戦いであった。そしてその歴史は、プログラマの関心が「How」から「What」へと徐々に移り変わっていくプロセスとして描くことができる。
コンピュータの黎明期、プログラミングとは、計算機が理解できる命令(How)を、一行一行、丹念に記述する作業そのものであった。アセンブリ言語や初期のFORTRAN、COBOLといった言語は、ハードウェアの制約を強く受けており、プログラマはメモリ管理やプロセッサの動作といった、極めて物理層に近いレベルでの「How」を意識する必要があった。
この時代のテストもまた、「How」に強く束縛されていた。書かれた手続きが、意図した通りに順番に実行されるか、特定の入力に対して期待された計算結果を返すか。テストの関心事は、あくまで「手続きの正しさ」の検証にあった。ビジネスロジックと実装の詳細が密結合し、コードは特定の処理手順を記述した、硬直的な塊となっていた。
風向きが変わり始めたのは、ソフトウェアの規模が拡大し、その複雑性が人間の認知能力を超え始めた頃だ。1990年代後半から2000年代にかけて提唱されたエクストリーム・プログラミング(XP)の中で、テスト駆動開発(TDD)という考え方が登場する。
TDDの本質は、単なるテスト手法の改善ではない。それは、プログラミングのパラダイムを根底から覆す思想だった。TDDは、「まずテストを書く」ことを強制することで、プログラマの意識を「これから実装するコード(How)」から「そのコードが満たすべき振る舞い(What)」へと強制的に転換させたのだ。
テストはもはや、書かれたコードの後追いで正しさを検証する作業ではない。それは、これから作られるべきソフトウェアの「仕様書」であり、「振る舞いの宣言」となった。例えば、「ユーザーがログインボタンをクリックしたら、ダッシュボード画面に遷移する」というテストコードは、具体的な実装方法(`onClick`イベントハンドラの中で`window.location.href`を書き換える、など)には一切言及しない。それはただ、達成されるべき「What」を記述しているだけだ。
この思想は、ビヘイビア駆動開発(BDD)へと発展し、`Given-When-Then`といった、より自然言語に近い形式でソフトウェアの振る舞いを記述するスタイルを生み出した。プログラマだけでなく、プロダクトマネージャーやビジネスアナリストといった非技術者をも巻き込み、「What」を共通言語として定義する試みが本格化したのである。
TDD/BDDによってプログラマの意識が「What」に向かい始めると、コードそのものもまた、宣言的なスタイルへと進化していく。この変化を劇的に加速させたのが、モダンなフレームワークの存在だ。
Reactを例に考えてみよう。Reactが登場する前、フロントエンド開発はjQueryに代表されるように、DOMを直接操作する命令的なコード(How)の連続だった。「このボタンがクリックされたら、この要素のテキストを書き換え、あちらの要素を非表示にする」といった具合だ。
しかし、Reactは「UIとは、ある状態(state)に対する純粋な写像である」という宣言的なモデルを提示した。プログラマがやるべきことは、UIの状態(`state`)と、その状態がどのように見えるか(JSXによるコンポーネント)を宣言することだけだ。状態が変更された際に、DOMをどのように効率的に更新するかという面倒な「How」の部分は、Reactの仮想DOMと差分検出アルゴリズムがすべて隠蔽してくれる。プログラマは「What(UIのあるべき姿)」を記述するだけでよくなったのだ。
この「WhatからHowへの変換」は、様々な領域で見られる。
これらのフレームワークやツールは、いわば「特定の制約下における、WhatからHowへの高性能な変換器」として機能してきた。プログラマは、フレームワークが課す「お作法」や「制約」を受け入れることで、退屈で間違いの多い「How」の記述から解放され、より本質的な「What」の定義に集中できるようになった。我々が「生産性が高い」と感じる開発体験は、この優れた変換器の恩恵に他ならない。
現状は、この歴史的変遷の延長線上にある。プログラマの仕事は、手続きを記述する職人から、振る舞いを定義し、それを実現するための最適な「変換器(フレームワーク)」を選択・設定するアーキテクトへと、その重心を移してきたのだ。
フレームワークがもたらした「WhatからHowへ」の潮流は、LLMの登場によって、未曾有のスケールで加速されようとしている。フレームワークが「特定の領域に特化した変換器」であったのに対し、LLMは「あらゆる領域に対応可能な、究極の汎用変換器」としてのポテンシャルを秘めているからだ。
前章で述べたように、ReactやTerraformといったフレームワークは、その恩恵と引き換えに、私たちに特定の「制約」を課してきた。Reactを使うならコンポーネントベースで思考し、状態管理の作法に従う必要がある。Terraformを使うなら、そのエコシステムとHCLの流儀を受け入れなければならない。これらの制約は、WhatからHowへの変換を自動化するための「レール」であり、私たちはそのレールの上を走ることで効率を得てきた。
しかし、LLMはこの前提を覆す。LLMは、特定のフレームワークや言語の知識を事前に学習しているが、その利用において絶対的な制約を課すわけではない。私たちは、より自由な形式で「What」を伝えることができる。
例えば、こうだ。
ユーザー認証機能付きのシンプルなブログアプリを作ってほしい。フロントエンドはReactとTypeScript、UIコンポーネントはMUIを使う。バックエンドはNode.jsとExpressで、データベースはPostgreSQL。ユーザーはGoogleアカウントでログインでき、新しい記事を作成、編集、削除できる。記事にはマークダウン記法が使えて、画像もアップロードできるようにしてほしい。
この要求(What)は、特定のフレームワークの流儀に則ったものではない。複数の技術スタックを横断し、機能要求を自然言語で並べただけのものである。しかし、現在のLLM、特にGPT-4oやそれに類するモデルは、このレベルの要求から、ディレクトリ構造、設定ファイル、APIエンドポイント、フロントエンドコンポーネントに至るまで、驚くほど具体的なコード(How)を生成することができる。
これは、フレームワークが担ってきた「WhatからHowへの変換」が、特定のレールから解き放たれ、より広範で柔軟な領域へと拡張されたことを意味する。これまで自動化が難しかった、あるいは特定のフレームワークが存在しなかったニッチな領域や、複数の技術を組み合わせる複雑なシステム構築においても、AIによる宣言的プログラミングの恩恵を受けられる時代が始まろうとしているのだ。
LLMという汎用変換器の登場により、プログラマの生産性は、「いかに質の高いWhatをLLMに伝えられるか」に直結するようになる。これは、俗に「プロンプトエンジニアリング」と呼ばれるスキルだが、その本質は、ソフトウェア開発における「要求定義」そのものである。
質の高い「What」とは何か。それは、曖昧性がなく、網羅的で、矛盾のない要求である。
これらは、優秀なソフトウェアエンジニアが、プロダクトマネージャーやデザイナーとの対話を通じて、日常的に行ってきた思考プロセスそのものではないだろうか。LLMの登場は、この思考プロセスを、より明確に、よりテキストベースで「記述」する能力を求める。私たちの頭の中にあった暗黙的な仕様が、LLMへの入力(プロンプト)という形で、明示的に言語化されることを要求するのだ。
やがて、ほとんどのプログラミング作業は、この「Whatの記述」に収束していくだろう。TDDがテストコードという形式で「What」を記述したように、私たちは自然言語や、より構造化された要求記述言語を用いて、AIに対して「What」を宣言することになる。コード(How)は、その宣言から自動生成される中間生成物に過ぎなくなる。まさに、コードが蒸発していく未来である。
「What」を伝えれば「How」が手に入る。この魔法のような世界の到来を前に、私たちは一つの重大な問いに直面する。それは、「そのWhatからHowへの変換は、本当に一意に決まるのか?」という問いだ。
答えは、明確にNoである。
ある「What(要求)」を実現するための「How(実装)」は、無数に存在する。そして、どの「How」を選択すべきかを決定するためには、単純な機能要求(What)だけでは情報が全く足りない。そこには、必ず「Why(なぜそう作るのか)」という、背景、文脈、そしてトレードオフの考慮が必要不可欠となる。
簡単な例を考えてみよう。「1億件のユーザーデータを格納し、ユーザーIDで高速に検索できるシステム」という「What」をLLMに与えたとする。LLMは、どのような「How」を提案するだろうか。
これらの選択肢は、どれも「What」を満たしている。しかし、その特性は全く異なる。案Aは多くのエンジニアにとって馴染み深く開発が容易だが、10億、100億件へのスケールは難しいかもしれない。案Bはスケール性に優れるが、厳密なトランザクション管理は苦手だ。案Cは高速だが、運用コストとシステムの複雑性が増す。案Dは安価だが、検索速度は他に劣る。
LLMは、これらの選択肢をリストアップすることはできるだろう。しかし、このプロジェクトにとって最適な選択肢はどれかを、自信を持って決定することはできない。なぜなら、その決定には、LLMが与えられていない「Why」の情報が必要だからだ。
これらの「Why」こそが、無数に存在する「How」の中から、ただ一つの「正解」を選び出すための羅針盤なのである。そしてこの「Why」は、ビジネスの目標、組織の文化、ユーザーの期待、技術的な制約といった、極めて人間的で、文脈依存的な情報の中にしか存在しない。
ここで重要なのは、これまでもエンジニアは、この「Why」に基づく意思決定を、意識的あるいは無意識的に行ってきたという事実だ。
私たちが技術選定を行うとき、単に「流行っているから」という理由だけでReactを選ぶわけではない。「SPA(Single PageApplication)にすることでユーザー体験を向上させたい(Why)」、「コンポーネント指向の開発によって長期的な保守性を確保したい(Why)」、「Reactエンジニアの採用市場が活発だから(Why)」といった、様々な「Permalink |記事への反応(0) | 17:09
2025年、私たちはソフトウェア開発の歴史的な転換点に立っている。大規模言語モデル(LLM)の進化は、GitHub Copilotのようなコード補完ツールに始まり、今や「何を作りたいか」を自然言語で伝えるだけで、アプリケーションの雛形が数分で生成される時代を現実のものとしつつある。この光景を目の当たりにした多くのプログラマが、漠然とした、しかし確かな不安を抱いているだろう。「私たちの仕事は、いずれAIに奪われるのではないか」と。
この問いに対する私の答えは、半分はYesであり、もう半分はNoだ。より正確に言えば、プログラマの仕事の本質が、歴史上かつてないレベルで抽象化され、その役割が再定義されるのだ。私たちは、コードを「書く」作業から解放される一方で、これまで以上に高度な思考を要求されることになる。
本稿では、プログラミングの歴史を「How(いかに作るか)」から「What(何を作るか)」への移行として捉え直し、LLMがこの流れをいかに加速させるかを論じる。そして、その先にある、AIには決して代替できない、人間ならではの競争優位性、すなわち「Why(なぜ作るのか)」を定義し、記述する能力の重要性について深く考察していく。これは、単なる未来予測ではない。今を生きるすべてのソフトウェアエンジニアにとっての、生存戦略の提示である。
LLMの登場を特異点として捉える前に、我々が立っている場所を正確に知る必要がある。ソフトウェア開発の歴史は、常に「抽象化」との戦いであった。そしてその歴史は、プログラマの関心が「How」から「What」へと徐々に移り変わっていくプロセスとして描くことができる。
コンピュータの黎明期、プログラミングとは、計算機が理解できる命令(How)を、一行一行、丹念に記述する作業そのものであった。アセンブリ言語や初期のFORTRAN、COBOLといった言語は、ハードウェアの制約を強く受けており、プログラマはメモリ管理やプロセッサの動作といった、極めて物理層に近いレベルでの「How」を意識する必要があった。
この時代のテストもまた、「How」に強く束縛されていた。書かれた手続きが、意図した通りに順番に実行されるか、特定の入力に対して期待された計算結果を返すか。テストの関心事は、あくまで「手続きの正しさ」の検証にあった。ビジネスロジックと実装の詳細が密結合し、コードは特定の処理手順を記述した、硬直的な塊となっていた。
風向きが変わり始めたのは、ソフトウェアの規模が拡大し、その複雑性が人間の認知能力を超え始めた頃だ。1990年代後半から2000年代にかけて提唱されたエクストリーム・プログラミング(XP)の中で、テスト駆動開発(TDD)という考え方が登場する。
TDDの本質は、単なるテスト手法の改善ではない。それは、プログラミングのパラダイムを根底から覆す思想だった。TDDは、「まずテストを書く」ことを強制することで、プログラマの意識を「これから実装するコード(How)」から「そのコードが満たすべき振る舞い(What)」へと強制的に転換させたのだ。
テストはもはや、書かれたコードの後追いで正しさを検証する作業ではない。それは、これから作られるべきソフトウェアの「仕様書」であり、「振る舞いの宣言」となった。例えば、「ユーザーがログインボタンをクリックしたら、ダッシュボード画面に遷移する」というテストコードは、具体的な実装方法(`onClick`イベントハンドラの中で`window.location.href`を書き換える、など)には一切言及しない。それはただ、達成されるべき「What」を記述しているだけだ。
この思想は、ビヘイビア駆動開発(BDD)へと発展し、`Given-When-Then`といった、より自然言語に近い形式でソフトウェアの振る舞いを記述するスタイルを生み出した。プログラマだけでなく、プロダクトマネージャーやビジネスアナリストといった非技術者をも巻き込み、「What」を共通言語として定義する試みが本格化したのである。
TDD/BDDによってプログラマの意識が「What」に向かい始めると、コードそのものもまた、宣言的なスタイルへと進化していく。この変化を劇的に加速させたのが、モダンなフレームワークの存在だ。
Reactを例に考えてみよう。Reactが登場する前、フロントエンド開発はjQueryに代表されるように、DOMを直接操作する命令的なコード(How)の連続だった。「このボタンがクリックされたら、この要素のテキストを書き換え、あちらの要素を非表示にする」といった具合だ。
しかし、Reactは「UIとは、ある状態(state)に対する純粋な写像である」という宣言的なモデルを提示した。プログラマがやるべきことは、UIの状態(`state`)と、その状態がどのように見えるか(JSXによるコンポーネント)を宣言することだけだ。状態が変更された際に、DOMをどのように効率的に更新するかという面倒な「How」の部分は、Reactの仮想DOMと差分検出アルゴリズムがすべて隠蔽してくれる。プログラマは「What(UIのあるべき姿)」を記述するだけでよくなったのだ。
この「WhatからHowへの変換」は、様々な領域で見られる。
これらのフレームワークやツールは、いわば「特定の制約下における、WhatからHowへの高性能な変換器」として機能してきた。プログラマは、フレームワークが課す「お作法」や「制約」を受け入れることで、退屈で間違いの多い「How」の記述から解放され、より本質的な「What」の定義に集中できるようになった。我々が「生産性が高い」と感じる開発体験は、この優れた変換器の恩恵に他ならない。
現状は、この歴史的変遷の延長線上にある。プログラマの仕事は、手続きを記述する職人から、振る舞いを定義し、それを実現するための最適な「変換器(フレームワーク)」を選択・設定するアーキテクトへと、その重心を移してきたのだ。
フレームワークがもたらした「WhatからHowへ」の潮流は、LLMの登場によって、未曾有のスケールで加速されようとしている。フレームワークが「特定の領域に特化した変換器」であったのに対し、LLMは「あらゆる領域に対応可能な、究極の汎用変換器」としてのポテンシャルを秘めているからだ。
前章で述べたように、ReactやTerraformといったフレームワークは、その恩恵と引き換えに、私たちに特定の「制約」を課してきた。Reactを使うならコンポーネントベースで思考し、状態管理の作法に従う必要がある。Terraformを使うなら、そのエコシステムとHCLの流儀を受け入れなければならない。これらの制約は、WhatからHowへの変換を自動化するための「レール」であり、私たちはそのレールの上を走ることで効率を得てきた。
しかし、LLMはこの前提を覆す。LLMは、特定のフレームワークや言語の知識を事前に学習しているが、その利用において絶対的な制約を課すわけではない。私たちは、より自由な形式で「What」を伝えることができる。
例えば、こうだ。
ユーザー認証機能付きのシンプルなブログアプリを作ってほしい。フロントエンドはReactとTypeScript、UIコンポーネントはMUIを使う。バックエンドはNode.jsとExpressで、データベースはPostgreSQL。ユーザーはGoogleアカウントでログインでき、新しい記事を作成、編集、削除できる。記事にはマークダウン記法が使えて、画像もアップロードできるようにしてほしい。
この要求(What)は、特定のフレームワークの流儀に則ったものではない。複数の技術スタックを横断し、機能要求を自然言語で並べただけのものである。しかし、現在のLLM、特にGPT-4oやそれに類するモデルは、このレベルの要求から、ディレクトリ構造、設定ファイル、APIエンドポイント、フロントエンドコンポーネントに至るまで、驚くほど具体的なコード(How)を生成することができる。
これは、フレームワークが担ってきた「WhatからHowへの変換」が、特定のレールから解き放たれ、より広範で柔軟な領域へと拡張されたことを意味する。これまで自動化が難しかった、あるいは特定のフレームワークが存在しなかったニッチな領域や、複数の技術を組み合わせる複雑なシステム構築においても、AIによる宣言的プログラミングの恩恵を受けられる時代が始まろうとしているのだ。
LLMという汎用変換器の登場により、プログラマの生産性は、「いかに質の高いWhatをLLMに伝えられるか」に直結するようになる。これは、俗に「プロンプトエンジニアリング」と呼ばれるスキルだが、その本質は、ソフトウェア開発における「要求定義」そのものである。
質の高い「What」とは何か。それは、曖昧性がなく、網羅的で、矛盾のない要求である。
これらは、優秀なソフトウェアエンジニアが、プロダクトマネージャーやデザイナーとの対話を通じて、日常的に行ってきた思考プロセスそのものではないだろうか。LLMの登場は、この思考プロセスを、より明確に、よりテキストベースで「記述」する能力を求める。私たちの頭の中にあった暗黙的な仕様が、LLMへの入力(プロンプト)という形で、明示的に言語化されることを要求するのだ。
やがて、ほとんどのプログラミング作業は、この「Whatの記述」に収束していくだろう。TDDがテストコードという形式で「What」を記述したように、私たちは自然言語や、より構造化された要求記述言語を用いて、AIに対して「What」を宣言することになる。コード(How)は、その宣言から自動生成される中間生成物に過ぎなくなる。まさに、コードが蒸発していく未来である。
「What」を伝えれば「How」が手に入る。この魔法のような世界の到来を前に、私たちは一つの重大な問いに直面する。それは、「そのWhatからHowへの変換は、本当に一意に決まるのか?」という問いだ。
答えは、明確にNoである。
ある「What(要求)」を実現するための「How(実装)」は、無数に存在する。そして、どの「How」を選択すべきかを決定するためには、単純な機能要求(What)だけでは情報が全く足りない。そこには、必ず「Why(なぜそう作るのか)」という、背景、文脈、そしてトレードオフの考慮が必要不可欠となる。
簡単な例を考えてみよう。「1億件のユーザーデータを格納し、ユーザーIDで高速に検索できるシステム」という「What」をLLMに与えたとする。LLMは、どのような「How」を提案するだろうか。
これらの選択肢は、どれも「What」を満たしている。しかし、その特性は全く異なる。案Aは多くのエンジニアにとって馴染み深く開発が容易だが、10億、100億件へのスケールは難しいかもしれない。案Bはスケール性に優れるが、厳密なトランザクション管理は苦手だ。案Cは高速だが、運用コストとシステムの複雑性が増す。案Dは安価だが、検索速度は他に劣る。
LLMは、これらの選択肢をリストアップすることはできるだろう。しかし、このプロジェクトにとって最適な選択肢はどれかを、自信を持って決定することはできない。なぜなら、その決定には、LLMが与えられていない「Why」の情報が必要だからだ。
これらの「Why」こそが、無数に存在する「How」の中から、ただ一つの「正解」を選び出すための羅針盤なのである。そしてこの「Why」は、ビジネスの目標、組織の文化、ユーザーの期待、技術的な制約といった、極めて人間的で、文脈依存的な情報の中にしか存在しない。
ここで重要なのは、これまでもエンジニアは、この「Why」に基づく意思決定を、意識的あるいは無意識的に行ってきたという事実だ。
私たちが技術選定を行うとき、単に「流行っているから」という理由だけでReactを選ぶわけではない。「SPA(Single PageApplication)にすることでユーザー体験を向上させたい(Why)」、「コンポーネント指向の開発によって長期的な保守性を確保したい(Why)」、「Reactエンジニアの採用市場が活発だから(Why)」といった、様々な「Permalink |記事への反応(0) | 17:09
「負荷試験で現実からかけ離れた雑なデータしか作れない素人です」って札を首から下げて生きた方がいいよ
また自己放尿か?
巨大なusersやitemsテーブルを無思慮にJOINすれば地獄の開始だ。
ハッシュ構造で事前展開すれば1回の探索で済むものを、何度もJOINすれば、データベースに無駄なI/OとCPUコストを強いる。
これはもう設計の怠慢であり、JOIN教信者の自己放尿と言っても過言ではない。
あえて君を責めるわけではない。恐らく君は「何も考えなくて済む」設計のほうが精神的に楽だったのだろう。それは理解できる。
だが、システムとは慈悲ではなく要件に応じて応えるべき存在だ。安易なjoin信仰は、時にシステム全体を腐らせる。
最後に言っておく。君も変われる。もしパフォーマンスの地獄を一度でも体験すれば、安易なJOINが気持ちよく出るものではなく、破滅の前兆であることを知るはずだ。
ごくごく常識的な内容だった
標準的なRailsアプリならDBはRDBだし、I/O待ちはほとんどDBアクセスと言っていい
RailsユーザーがRailsのイベントでRailsユーザー向けにやってるトークなんだからそこは前提だろ
スライドの大筋は古典的なI/OバウンドとCPUバウンドの話題であり、DBアクセス以外のI/O待ちにも触れてる
要するにどう見ても最低限の知識があるはずの人間がなんでそんなタイトルを付けてるのかっつーと、I/Oなんて言っても意味が分からない程度の初級者のための配慮だろうがよ
どう見てもやべーのはお前だから
ある方が「遺書だったもの」というブログ・エントリーを公開してはてなブックマークで注目を集めています。
https://kirimin.hatenablog.com/entry/2024/09/04/001242
一読しただけで大変な状況の中ご本人が精一杯頑張ってきたことが伝わってきました。
普通の人は不登校になったあとに就職したり(それもB社側からの打診で正社員に!)、アメリカ出張、趣味でイラストや競技プログラミング、といった活動は出来ません。
なにより踏みとどまるという意思を持たれていることが一番素晴らしいと思います。
ブログの内容について、アドバイス、というより考えてみるきっかけを提供できればと思い、以下に書いておきます。
"アドバイス"という言葉は上から目線のニュアンスがあるため私は嫌いですが、分かりやすさのためにあえて"アドバイス"と記載しております。
"アドバイス"の手がかりとして、世の中の多くの人たちと異なっている点を特徴として捉え、そこに着目して述べていきます。
多くの人は、自死を取りやめた場合は遺書を公開しません。ここが最大のポイントです。
他にも、元カノの話や学校で友達を作りたかった話、インターネット掲示板、会社の同僚との関わりなど、コミュニケーションについて多く言及していることもかなり特徴的です。
心理的な安定のためには、インターネットで構わないので、コミュニケーションの場への参加を増やしてしてみると良いかもしれません。
私も同世代で、2005年~2007年ごろには2chで政治家をおちょくるコラージュ写真を作って遊んでいたので、当時の雰囲気は知っています。当時と似たコミュニティはもはやほとんどなく、ネット掲示板よりもLINEのオープンチャットあたりのほうが雰囲気が近いかもしれません。
仕事やそれに近い競技プログラミングの能力・モチベーションでご自身の価値をはかる表現が目立ちます。
仕事への情熱はご自身の能力開発、社会貢献、金銭獲得のために素晴らしいことです。
一方で能力・モチベーションで全人類のトップに立つことは出来ない以上、どこかで自分の能力に見切りをつける必要があります。
それが今なのかな、と漠然と感じました。
人には能力の限界・投入できる時間の長さの制約があり、その制約のもと各自それぞれのペースで頑張るしかなく、他に選択肢はないため、ある面で人より劣ることを認めざるを得ません。
しかしだからといって人間として価値がないとか、死ぬべきだということは論理の飛躍です。
劣ることを認めたうえで、それがどうした、自分が死ぬ必要はないじゃないか。むしろ優れた人たちが素晴らしい社会を作ってくれてありがたい、と感謝すればよいと私は思います。ご自身にもその気持があるはずです。その証拠にA社のリーダー、B社のプロダクト、元カノ、といったものを称える文章があります。これは称賛の気持が奥底にあるからだと思います。
というより本当は人間という存在自体が自他に価値を評価される必要がなく、各自勝手に生きて構わないと私は思います。評価という行為自体が発生しないのが通常の状態であり、仕事では給料の分配という特別な目的のために上司が評価するという例外的なシチュエーションが発生していると私は理解しています。つまりそもそも職場以外での「自己評価」は必須ではないと私は考えています。
そのうえで、それでもなお自己評価が必要であれば、いくつもの会社で働くことができ、しかも先方から声をかけてもらっているというのは素晴らしいことだと思います。普通の人には声をかけませんよね。仕事の以外の面に目を向けると、イラスト、VR、他の投稿ではお母様にテレビゲームを教えたりと多方面に活動している点が素晴らしいと思います。競技プログラミングで高レート帯の方々はこうした活動と両立できるのでしょうか。ほとんどNoだと思います。総合的に見れば特別劣っているように私には見えません。
この点は次の第3の特徴に続きます。
文章には「多くの人から嫌われ、失望され、迷惑をかけながら生きていたくない。」と書かれています。
しかしきりみんさんは、嫌われている人・失望されている人・迷惑をかけている人に対して、死ねとは言わないと思います。そういう人柄だと文章で分かります。
それなのに自分に対して厳しいのはダブルスタンダードで、ご自身を不必要に傷つけているように見えます。ご自身に対して厳しすぎるダブルスタンダードを持つ理由は何でしょうか。ダブルスタンダードを持つメリットはあるのでしょうか。これについて考えると楽になれる部分があると思います。
きりみんさんは、自分より仕事ができない人に死ねと言わないと思います。競技プログラミングが下手な人に死ねと言わないと思います。その理由は劣っていても死ぬ必要はないとご自身が理解しているからです。そうであればきりみんさんが死ぬ理由もないと私は思います。
正解が「数学的」に決まるところ。たとえば「1■1=2 のときに ■を答えなさい」というときに競プロは■を答えるだろうし、それを早く答えて悦に入るだろう。
それもいいけど、いちど数学的に答えが決まっちゃう問題はライブラリにまとめられて、一般的なコーダはなにも考えなくてもインポートして処理できちゃうわけ。上の例えだとふつーのプログラマなら「枯れたライブラリをインポートして、正しく答えが出ると確信できるなら『答えは正しいとか考えなくても』それを使って対処する」ので、データの振る舞いとか気にしないで済む。たとえばSQL なんて、実行時計画という「アルゴリズムを常に指定するなら不要な」話題があるのだけど、データ量によって適切なアルゴリズムが変化するから仕方ないし、概ねRDB は賢いのでヒューマンが考慮するのは問題がある場合だけなのだ。よって、競技プログラマが生産性を確実に上げるという根拠はない。
もちろん、アルゴリズム知識を身につけるのは大切だし、クヌース先生も書いてたけど分散処理アルゴリズムはフロンテイアだろうよ。というか、暗号分野やセキュリティの領域や、条件が過酷な場合(宇宙線の影響下とか、メモリの少ないエッジコンピューティングとか)だと、アルゴリズムの研究や追求は大切なのは今も同じだ。でも、競技プログラマが新規にアルゴリズムを開発したり、セキュリティに向上したという話は聞いたことがないが、レッドコーダー諸君は自前で創造して使われた実績はあるのだろうか?
ついでに聞いてみたいのだが、競技プログラマたちは「マルチスレッドなコードで早く書こうとしないのはなぜ?」「そもそも、競技プログラミングで使うコードは便利なスニペッツがあるけどそれってチートでは?」「ときどき正規表現で解く問題があるけど、そのときの計算量は無視してない?」という矛盾を抱えているのてはないか?と思うのだが如何か。
究極的には競技プログラミングに必要な知識というのは、産業用途で要求される知識の一部でしかないのが問題なんだと思うよ。ほら、アレだよ、むかし話題になった「数学だけデキる人向けの東工入試をやったら、英語ができなくて卒業できなかった」という童話に近いんだよ。競技プログラムってインとアウトしか見てないブラックボックステストだから、ここだけしか計算機科学の知識が無いというヤバ人材の育成しかなってないのだろうな。
まぁ、下っ端プログラマには要らないだろうけど、いわゆるシステムエンジニアとかアーキテクトとか言われるレベルの仕事するには、なるべく知っとかないといけないよね。
オレの場合は、大学はかろうじて理系の一角だったけど、学問的にコンピュータサイエンスを学んだことはなくて、某IT会社でなかば業務上の必要に迫られ、なかば趣味的な興味本位もありで、ちょっとずつ勉強した。
で、もう20年くらい前だし、すでに廃止されてる(と思う)ので、守秘義務違反とかの面倒なことにならなそうだと想定してぶっちゃけると、大手携帯会社のショップで各店舗独自のプロモーション打ったりするためのWebシステムの開発に関わったことがある。
顧客の(および自分とこの)エライ人なんかに、システムの設計の根拠(この方式が最善なのか?もっと安く早くやれる方法はないのか?などなど)を常に問いかけられ、説明説得しなきゃならない。そこでコンピュータサイエンスに基づいて理路整然と話をすると、ちゃんと信頼してもらえるし、納得してカネ払ってもらえるw
そこで使ったのが、以下のような各種理論だ:
などなど...自分史上最高に残業させられたこの仕事やってた年の年収は、900万円台おしくも1000万には届かなかったねぇw
--追記--
コンピュータサイエンスがらみの思い出でもう一個面白い(とオレが思う)ネタがあるので、ついでに書いとこうw
これは、上で書いた携帯会社のシステムよりだいぶ前のことになるが、とあるグループウェアの開発に関わってたとき、メールをFAXに向けて出力するドライバを書いたことがある。昔のことなのでオープンソースもあんまり普及してないし、タダでお手軽に使えるライブラリが見つからなかったので、「車輪の再発明」っぽいけど自分でハフマン符号化によるデータ圧縮のアルゴリズムを勉強して作ったのだ。
Win32のAPIとか呼び出して、ビットマップにテキストを描画させたとこから、ドットをちまちま数えて、白のドットがいくつ続いてたらこのコード、黒がいくつ続いてたらあのコード...って可変長のビットパターンをつなぎ合わせてファイルに書き出す...みたいな。これが理論通りにうまいこと動作して、FAXから文書が出てきた時はとっても楽しかったw