
はてなキーワード:集合論とは
フェミニズムの分類が多すぎると聞いて
記述集合論(Borel階層, Projective階層, 汎加法族)
モデル理論(型空間, o-極小, NIP, ステーブル理論)
再帰理論/計算可能性(チューリング度, 0′, 相対計算可能性)
構成主義,直観主義,ユニバース問題,ホモトピー型理論(HoTT)
体論・ガロア理論
表現論
K-理論
初等数論(合同, 既約性判定,二次剰余)
解析数論(ゼータ/ L-関数,素数定理,サークル法, 篩法)
p進数論(p進解析, Iwasawa理論, Hodge–Tate)
超越論(リンドマン–ヴァイエルシュトラス, ベーカー理論)
実解析
多変数(Hartogs現象, 凸性, severalcomplex variables)
関数解析
バナッハ/ヒルベルト空間,スペクトル理論, C*代数, von Neumann代数
フーリエ解析,Littlewood–Paley理論, 擬微分作用素
確率解析
常微分方程式(ODE)
偏微分方程式(PDE)
非線形PDE(Navier–Stokes, NLS, KdV, Allen–Cahn)
幾何解析
リッチ流, 平均曲率流,ヤン–ミルズ,モノポール・インスタントン
エルゴード理論(Birkhoff, Pesin),カオス, シンボリック力学
点集合位相,ホモトピー・ホモロジー, 基本群,スペクトル系列
4次元トポロジー(Donaldson/Seiberg–Witten理論)
複素/ケーラー幾何(Calabi–Yau, Hodge理論)
スキーム, 層・層係数コホモロジー, 変形理論, モジュライ空間
多面体, Helly/Carathéodory,幾何的極値問題
ランダムグラフ/確率的方法(Erdős–Rényi, nibble法)
加法的組合せ論(Freiman, サムセット, Gowersノルム)
彩色,マッチング,マイナー理論(Robertson–Seymour)
列・順序・格子(部分順序集合, モビウス反転)
測度確率, 極限定理, Lévy過程, Markov過程, 大偏差
統計学
ノンパラメトリック(カーネル法, スプライン,ブーストラップ)
時系列(ARIMA,状態空間, Kalman/粒子フィルタ)
非凸最適化
離散最適化
整数計画,ネットワークフロー, マトロイド, 近似アルゴリズム
Littleの法則, 重み付き遅延, M/M/1, Jackson網
エントロピー,符号化(誤り訂正, LDPC,Polar), レート歪み
公開鍵(RSA,楕円曲線, LWE/格子),証明可能安全性,MPC/ゼロ知識
計算複雑性
機械学習の数理
量子場の数理
相転移, くりこみ, Ising/Potts, 大偏差
数理生物学
数理神経科学
データ解析
田中の計算論理入門とかバリバリ理解できるのか。それともそういう人でもこのレベルの専門書はだましだまし読んで理解した気になればいいって部分で済ませてる人多いのか
-----BEGINPGP SIGNEDMESSAGE-----Hash: SHA512https://anond.hatelabo.jp/20251018151013# -----BEGINPGP SIGNATURE-----iHUEARYKAB0WIQTEe8eLwpVRSViDKR5wMdsubs4+SAUCaPMvRgAKCRBwMdsubs4+SDsDAQDO/LizbstDU3AXtQilRe1JWHR1oQL7YSMmWKVrvopwzwD/fjimjQk4lfP06dmpnpxO7oo0l8sfQ00UhkwzW8ws7Ac==ix0l-----ENDPGP SIGNATURE-----
はてな記法覚えなきゃな。
>それをUaとUbと書くのは、普通の集合論ではできない(UaとUbは同じXの元で定義されるものではない)、
それはごもっとも。
集合っぽく書いた私が悪かった。Ubはその性質から集合の元にはなり得ないので、そこは貴方の言う通り。
Ubは人間の認知フレームFから構造的に到達できない外部、と考えてください。
>つまりあなたの証明?のような形式的にX外の存在を示すことはX内部の論理ではできない。と思うよ
X内の話です。
私はUbの存在を”示して”ないんですね。そもそも示せないので。
あなたはFを関数と見ているが、我々に認識できる世界体系がXではないのかな?
Xの中で、Xのロジックを使って、X外のことがわからないのはその通りだけど、それをUaとUbと書くのは、普通の集合論ではできない(UaとUbは同じXの元で定義されるものではない)、つまりあなたの証明?のような形式的にX外の存在を示すことはX内部の論理ではできない。と思うよ
昨日は、僕の週間ルーティンの中でも最も重要な整合性検証日だった。つまり、宇宙がまだ局所的に論理的であるかを確認する日だ。
朝7時ちょうどに起床し、ベッドの角度を壁と垂直に再測定した結果、誤差は0.03度。つまり宇宙はまだ僕を裏切っていない。
朝食の時間、ルームメイトがトースターを再び二枚焼きモードにしたが、今回は驚かなかった。僕は冷静に、バナッハ=タルスキ分割の話を持ち出してこう言った。
「君のパンは二枚に見えるが、集合論的には同一だ。したがって、君の誤りは物理ではなく測度論の問題だ。」
彼は黙ってパンをかじった。理解されることを期待するのは、もはやハイゼンベルク的非決定性と同義だ。
午前中は、僕の新しい理論「ホモトピー圏上の自己参照的弦圏理論」の検証を進めた。
通常の超弦理論がカテガリー的に整合するのは、D-ブレーンが導くモジュライ空間の滑らかさが保証されている範囲内に限られる。
しかし僕は最近、滑らかさという仮定そのものを削除し、「∞-圏上のA∞代数的自己整合性条件」に置き換えるべきだと気づいた。
つまり、弦のダイナミクスを場の配置空間ではなく、「圏の自己ホモトピー類」として定義するのだ。すると興味深いことに、背景幾何が消滅し、すべての次元は内部的モノイダル構造に吸収される。
言い換えれば、「空間」とはただの圏論的影であり、時空の実在は「自然変換の連続体」そのものになる。
これが僕の提案する“Self-fibrantString Hypothesis”だ。ウィッテンが読んだら、きっと静かに部屋を出ていくに違いない。
昼過ぎ、隣人がまた廊下で大声で電話していたので、僕はノイズキャンセリングヘッドフォンを装着し、同時に空気清浄機を「ラグランジュ安定モード」に切り替えた。
これは僕が改造した設定で、空気の流速が黄金比比率(φ:1)になるよう調整されている。これにより室内の微粒子分布が準結晶構造に近似され、精神的平衡が保たれる。
僕は自分の心の状態を量子的可換代数で表すなら、ほぼ可換な冪零理想の中にあるといえる。隣人は理解していないが、それは仕方ない。彼女の精神空間は可約表現のままだ。
午後は友人たちとオンラインでEldenRingを再プレイした。僕は魔術師ビルドで、ルーンの経済を「局所場理論の再正則化問題」として再解釈している。
彼らがボスを倒すたびに叫ぶのを聞きながら、僕は心の中でリーマン面の分枝構造を追跡していた。実はEldenRingの地形構成はリーマン面の切り貼りに似ており、特にリエニール湖の設計は2次被覆の非自明な例として見ることができる。
開発者が意図していないことはわかっているが、現象としては美しい。芸術とは本質的に、トポスの自己鏡映だ。
夜、僕はコーヒーを淹れ、久々にグロタンディークのRécolteset Semaillesを読み返した。数学者が自分の「精神の幾何学」について語る箇所を読むと、僕の理論的中枢が共振する。
グロタンディークが述べた「点は存在しない、ただ開集合がある」という思想は、僕の弦理論観と同じだ。物理的対象とは「開集合上の自然変換」に過ぎず、存在とは測度可能性の仮構にすぎない。つまり、宇宙とは「圏論的良心」だ。
深夜、ルームメイトが僕の部屋をノックして「一緒に映画を観ないか」と言った。僕は「今日は自己同型群の可換性検証を行う予定だ」と答えたが、彼は肩をすくめて去った。
代わりに、僕はブレードランナー2049のBlu-rayを再生し、壁紙の色温度を劇中のネオン発光スペクトル(中心波長602nm)に合わせた。
完全な没入体験のために、部屋の空気を2.3ppmのオゾン濃度に調整した。呼吸するたびに、僕は自分が物質ではなく関手の束だと実感する。
一般人のよくある言い回しとして「大学の数学科でやっているのは数学ではなく哲学だ」というものがあります。これは実態を誤解したものと考えます。数学と哲学の論理構造や依拠する原理の違いに着目し、どのように誤解であると言えるかを解説してください。
---
多くの人が「大学の数学科は“哲学的なこと”をしている」と感じるのは、次のような体験的印象に基づいています。
**抽象度の高さ**
学校数学は数値計算や図形、方程式など具体的な操作が多いですが、大学では集合・位相・群・環などの抽象概念が中心になります。実体がない記号を扱うため、「思弁的で現実離れしている」という印象を受けやすい。
**証明の重視**
高校までの数学では、公式や定理を使って問題を解くことが主でした。大学数学では定理を“証明する”こと自体が中心になります。演繹的に進むため、哲学の論証と混同されやすい。
**直感に反する結果**
カントール集合やゲーデルの不完全性定理など、常識を裏切る結論に出会うと「これはもはや哲学では?」と感じがちです。
---
数学ではまず**公理系**(集合論・論理体系など)を定め、そこから**形式的に定義と定理を導く**ことが中心です。
証明は論理的整合性のもとに、有限の推論ステップで厳密に完結します。
「真偽」は定められた公理系の内部で決まる(たとえば ZFC の下での定理かどうか)。
哲学では「公理」や「定義」の選び方自体が主要な思考対象です。
例:真理とは何か、存在とは何か、数学の基盤は何に依拠するか。
推論自体は論理を用いますが、**議論の目的は推論よりも前提や概念の意味を吟味すること**にあります。
証明可能性よりも「概念的・認識論的な一貫性」を探ります。
### 要するに:
数学は**選んだ前提の内部で閉じた演繹体系**。
哲学は**前提や体系そのものを開かれた問いとして扱う**。
---
数学 哲学 ----- ---------------- ---------------- 基盤 公理・定義・形式論理 推論+概念分析・経験・メタ理論 真理の基準 公理系内の定理性 妥当性・合理性・批判的検討 方法 定義→補題→定理→系の形式的構築 問題設定→概念批判→異論との対話 ゴール 内部一貫性と定理の発見 前提の吟味と概念の明確化 ---
数学の抽象化は「より多くの具体例を統一的に扱う」ための道具です。たとえば群論は「対称性」という実際的な現象を一般化しています。現実逃避ではなく応用力の拡張です。
哲学的議論は自然言語の意味に依存しますが、数学の証明は形式言語に還元可能なレベルまで精密化されます。
哲学は「数学の基礎は何か」「無限とは何か」を問うかもしれませんが、数学科の学生が行うのは、すでに受け入れた公理体系の中で定理を立てる作業です。
---
## 5. まとめ
抽象度の高さや証明重視の新鮮さを「哲学的」と感じているに過ぎない
実際には**数学は厳密な公理体系の中での定理の探求**であり、前提の批判や概念の意味そのものを問う哲学とは方法も目標も異なる
この質問は、定義の無限後退という問題に関連しています。数理論理学では、この問題を解決するためにいくつかの方法や考え方があります。
数理論理学(特に公理的集合論や形式体系)では、すべての概念を定義しようとすると無限後退に陥るため、いくつかの基本的な概念を無定義、すなわち「原始概念」として受け入れます。
これらの概念はそれ以上定義されず、公理によってその性質が規定されます。
例えば、ユークリッド幾何学における「点」「線」「平面」などがこれに当たります。
これらは定義されず、公理(例:「異なる二点を通る直線はただ一つ存在する」)によってその関係や振る舞いが規定されます。
数理論理学の文脈では、例えば「集合」「要素」「論理結合子(AND, OR, NOT)」などが原始概念とされることがあります。
原始概念は、直接的な定義ではなく、公理によってその意味や性質が与えられます。
公理とは、その体系内で真であると仮定される基本的な命題です。
これらの公理を通して、原始概念間の関係や、それらから構築される概念の性質が暗黙的に定義されます。
自然数「0」、後者関数「S(x)」を原始概念として、以下の公理を設定します。
4.任意の自然数 x, y に対して、S(x) = S(y) ならば x = yである。
5.任意の集合 K について、0 ∈ K かつ「任意の自然数 x に対して x ∈ K ならば S(x) ∈ K」が成り立つならば、すべての自然数は K に属する。(数学的帰納法の原理)
これらの公理によって、「自然数」「0」「後者関数」という概念が間接的に、しかし厳密に定義されます。
厳密な形式体系においては、循環定義や無限後退を避けるために、定義の階層を明確にすることが重要です。
現代の数理論理学、特に集合論では、ツェルメロ=フレンケル集合論(ZFC)などの公理系が、数学のほとんどすべての概念を基礎づけるものとして広く受け入れられています。
ZFCは、「集合」という原始概念と、いくつかの公理(外延性公理、空集合公理、対の公理、和集合公理、冪集合公理、無限公理、置換公理、基礎の公理、選択公理)から構成されます。
これらの公理によって、数学的対象(数、関数、関係など)がすべて集合として構成され、その性質が集合論の枠組みの中で厳密に記述されます。
「X1とは?」「X2とは?」といった定義の無限後退は、数理論理学においては、最終的に原始概念に到達し、それらの概念は公理によってその性質が規定されることで解決されます。
つまり、すべての概念を定義し尽くすのではなく、一部の基本的な概念を無定義として受け入れ、その関係性を公理によって厳密に定めることで、論理体系全体の基礎を築いています。
どうして世の中は、ここまでまでにも低次元な話題で満たされているんだろう?
天気、芸能、噂話、表層的な政治のやりとり。知性の対流はどこに消えた?
人間は有限な脳リソースを持っているのに、その99%がどうでもいい入力で埋め尽くされてる現実は、もはや精神的な浪費だ。
例えば、なぜ誰も「グロタンディーク宇宙」を話題にしない?あれはもはや数学という言語を超えて、存在論そのものに接続するスキームだ。
集合論の上に成り立つ古典的な数学構造から自由になろうとした、その大胆さと深淵さは、まるで物理法則の背後にある数学的美の亡霊を追いかけるようなものだ。
それとも、「カルツァ=クライン理論」を掘り下げた上で、「コンパクト化の自由度」が我々の時空構造に与える哲学的意味について会話できる人間はもう絶滅したのか?
量子重力理論の融合問題、特にループ量子重力と超弦理論のアプローチの根本的差異を語れる人と飲みに行きたいんだよ、俺は。
物質が本質的に情報だという観点から、ブラックホール情報パラドックスが意味するのは「情報の保存則の破れ」なのか、それとも我々が持っている「情報とは何か」という定義の方が間違っているのか。
こういう問いこそが、文明の核心にあるべきだろう?
人間が文明を築いて以来、我々は「どこから来て、どこへ行くのか」を形式体系で問おうとしてきた。
自然数に対して加法と乗法を定義し、ペアノ公理系を構築し、それが完全でも無矛盾でもないことをゲーデルが証明した時点で、真理は証明可能性の外に存在することが明らかになった。
この衝撃から回復するどころか、世間はますます計算可能なもの、アルゴリズムで消費できるものにしか興味を持たなくなった。
何のために意識は進化したのか?それが単なる環境適応の副産物だと片付けるには、意識が認識する数学的対象の精緻さがあまりにも過剰だ。
なぜラマヌジャンは夢の中で未知の関数恒等式を発見できたのか?なぜヒルベルト空間のような抽象概念が、量子力学の基礎としてこれほど自然に振る舞うのか?
この「抽象と現実の接続」が偶然である可能性は、論理的にほとんどゼロに近い。
俺が求めているのは、「真に知的な対話」だ。知識をなめらかな面として持っているだけの人間ではなく、それを自己組織化的に再構築できるような構造的知性。
話題がトポス理論からエントロピー最大化原理に移行しても違和感なくついてこれるような、そんな会話。
少なくとも「その場のノリ」とか「空気を読む」なんていう神経消耗ゲームよりは、よほど脳が報酬系を刺激されるはずだ。
いつになったら、街角のカフェで「カテナリー曲線の最小作用原理が、実は一般相対論と繋がってるって知ってた?」なんて会話が自然に聞こえる社会になるんだろうな。
俺はね、やっぱり哲学も純粋数学も役に立たねぇなって思っちまうんだよな。
だが、その瞬間、パラドクスに陥る。この思考自体が哲学的命題であり、その論理構造は数学的基盤に依拠している。
クソッ、頭の中で超弦理論とカラビ・ヤウ多様体が交錯し始めやがった。
11次元の時空間で、プランク長のスケールでの量子重力効果を考慮すると、存在そのものが確率的な様相を呈し、ハイゼンベルクの不確定性原理が存在論にまで拡張される。
昨日なんざ、スーパーでリンゴ買ってて、突如としてペアノの公理系からZFC集合論に至る数学基礎論の系譜が脳裏に浮かんだ。
そして、ゲーデルの不完全性定理とコーエンの強制法を経て、continuum hypothesisの独立性にまで思考が飛躍。
これって、日常的現実と数学的抽象の境界の曖昧さを示唆してんじゃねぇのか?
帰り道、ガキどもがニーチェの永劫回帰について議論してんの聞こえてきて、思わず「お前ら、ウィトゲンシュタインの『論理哲学論考』読んだか?言語の限界が世界の限界だぞ!」って叫んじまった。
だが同時に、後期ウィトゲンシュタインの言語ゲーム理論も考慮に入れねぇとな。
あぁ、またフッサールの現象学的還元とハイデガーの存在論的差異の狭間で思考が揺れ動いてきやがる。
哲学者どもは、こんな認識論的アポリアの中でメシ食ってんのか。
数学者連中だって、ラングランズ・プログラムの壮大な構想の中で、数論幾何と保型形式の深遠な関係に魅了されてるんだろうな。
正直、俺もそんな純粋知性の探求に身を捧げられる連中が羨ましい。
日々の下らねぇ現実に囚われてりゃ、位相幾何学におけるポアンカレ予想の証明やら、P≠NP問題の解決なんて夢のまた夢だからよ。
ったく、人生ってのは、まるでリーマンゼータ関数の非自明な零点の分布みてぇだな。
複雑で、規則性を秘めてそうで捉えどころがねぇ。
でも、その美しさと深遠さに魅了されずにはいられねぇ。
くそっ、また「PrincipiaMathematica」と「存在と時間」を同時に読み返したくなってきやがった。
数学的構造は、以下の基本的な「素材」から作られていると考えられる。
数学的構造の出発点は、要素が集まった集合である。たとえば、群や環、位相空間といった構造はいずれも、何らかの台集合(例えば、数や点の集まり)をその基盤としている。
台集合の上に、要素同士の結合や順序付けを定める演算(加法、乗法、合成など)や、要素間の関係(順序、等号、位相の開閉の関係など)が定義される。これらの操作や関係が、台集合に「動き」や「法則性」を与え、単なる集まり以上の意味を持たせる。
さらに、その演算や関係がどのような性質を満たすかを明確にするために、公理と呼ばれる基本的な命題群が設定される。たとえば、群の公理(結合律、単位元の存在、逆元の存在)や、位相空間の公理(開集合系の性質)などがこれにあたる。公理は、構造内の演算や関係の「ルールブック」として、全体の一貫性を保証する。
上記の要素(台集合、演算・関係、公理)は、集合論や形式論理といった論理的な基盤の上に構築される。これにより、数学的構造は客観的かつ普遍的な論理法則に従って厳密に定義され、検証可能なものとなる。
数学的構造は「台集合」という材料に、その集合上で働く演算や関係という加工を施し、公理という規則で仕上げた、論理学・集合論という工場で作られる『組織的な構成物』であると言える。
量子力学における観測者問題についてはよく知られるように、人間の主観性が量子実験の結果に重要な役割を果たしている。
ドイツの物理学者ヴェルナー・ハイゼンベルクによる有名な引用がある。
「私たちが観察するのは現実そのものではなく、私たちの質問の方法にさらされた現実です。」
例えば有名なダブルスリット実験では、スリットの後ろに検出器を置かなければ電子は波として現れるが、検出器を置くと粒子として表示される。
したがって実験プロトコルの選択は、観察する行動パターンに影響する。これにより、一人称視点が物理学の不可欠な部分になる。
さて、数学にも一人称視点の余地はあるか。一見すると、答えは「いいえ」のように見える。
ヒルベルトが言ったように、数学は「信頼性と真実の模範」のようである。
それはすべての科学の中で最も客観的であり、数学者は数学的真理の確実性と時代を超越した性質に誇りを持っている。
ピタゴラスが生きていなかったら、他の誰かが同じ定理を発見しただろう。
さらに定理は、発見時と同じように、今日の誰にとっても同じことを意味し、文化、育成、宗教、性別、肌の色に関係なく、今から2,500年後にすべての人に同じ意味があると言える。
さて、ピタゴラスの定理は、平面上のユークリッド幾何学の枠組みに保持される直角三角形に関する数学的声明である。しかし、ピタゴラスの定理は、非ユークリッド幾何学の枠組みでは真実ではない。
何が起こっているのか?
この質問に答えるには、数学的定理を証明することの意味をより詳しく調べる必要がある。
定理は真空中には存在しない。数学者が正式なシステムと呼ぶものに存在する。正式なシステムには、独自の正式な言語が付属している。
つまり、アルファベットと単語、文法は、意味があると考えられる文章を構築することを可能にする。
その言語には、「点」や「線」などの単語と、「点pは線Lに属する」などの文章が含まれる。
次に正式なシステムのすべての文のうち、有効または真実であると規定した文を区別する。これらは定理である。
それらは2つのステップで構築されれる。まず、最初の定理、証明なしで有効であると宣言する定理を選択する必要がある。これらは公理と呼ばれる。
公理からの演繹は、すべての数学がコンピュータで実行可能な印象を生む。しかし、その印象は間違っている。
公理が選択されると、正式なシステムで定理を構成するものに曖昧さがないのは事実である。
これは実際にコンピュータでプログラムできる客観的な部分である。
例えば平面のユークリッド幾何学と球の非ユークリッド幾何学は、5つの公理のうちの1つだけで異なる。他の4つは同じである。
しかしこの1つの公理(有名な「ユークリッドの5番目の仮定」)はすべてを変える。
ユークリッド幾何学の定理は、非ユークリッド幾何学の定理ではなく、その逆も同様。
ユークリッド幾何学と非ユークリッド幾何学の場合、答えは明確である。これは、単に説明したいものに対応している。
数学は広大であり、どのように公理を選択するかという問題は、数学の基礎に深く行くと、はるかに感動的になる。
すべての数学的オブジェクトは、いくつかの追加構造を備えたセットと呼ばれるものであるということだ。
たとえば自然数のセット1,2,3,4,...は加算と乗算の演算を備えている。
集合論は特定の正式なシステムによって記述される。Ernst ZermeloとAbraham Fraenkelと、選択の公理と呼ばれる公理の1つに敬意を表して、ZFCと呼ばれる。
今日の数学者は、すべての数学を支える集合論の正式なシステムとしてZFCを受け入れている。
彼らは、無限の公理と呼ばれるZFCの公理の1つを含めることを拒否する。
言い換えれば、有限主義者の正式なシステムは、無限の公理のないZFCである。
無限大の公理は、自然数の集合1,2,3,4,...が存在すると述べている。すべての自然数に対してより大きな数があるという声明(「ポテンシャル無限大」と呼ばれる)よりもはるかに強い声明である。
有限主義者は、自然数のリストは決して終わらないことに同意するが、いつでも自然数の集合の有限の部分集合のみを考慮することに限定する。
彼らは一度にまとめたすべての自然数の合計が実在することを受け入れることを拒否する。
この公理を取り除くと、有限主義者が証明できる定理はかなり少なくなる。
正式なシステムを判断し、どちらを選択するかを決定することができるいくつかの客観的な基準...なんてものはない。
「時間と空間を超越した何かを象徴しているので無限大が大好きだ」と言えば無限大の公理を受け入れることができる。
ゲーデルの第二不完全性定理は、十分に洗練された正式なシステム(ZFC等)は、自身の一貫性を証明することができないと述べている。
数学者は、今日のすべての数学の基礎であるZFCが確固たる基盤にあるかどうかを実際に知らない。
そしておそらく、決して知ることはない。
なぜなら、ゲーデルの第二の不完全性定理によって、より多くの公理を追加することによってZFCから得られた「より大きな」正式なシステムにおけるZFCの一貫性を証明することしかできなかったから。
一貫性を証明する唯一の方法は、さらに大きな正式なシステムを作成することだけだ。
数学を行うためにどの公理を選択すべきかについて、実際には客観的な基準がないことを示唆している。
要するに、数学者が主観的に選んでいるというわけである。自由意志に任せて。
公理のための主観的な基準というのは、より豊かで、より多様で、より実りある数学に導くものを選ぶという人は多い。
これは自然主義と呼ぶ哲学者ペネロペ・マディが提唱する立場に近い。
特定の公理のセットを選択する行為は、量子物理学の特定の実験を設定する行為に似ている。
それには固有の選択肢があり、観察者を絵に導く。
現代の数学者のほとんどは形式化された数学の体系であるツェルメロ-フレンケル集合論ZFCを使っています.
言及されている通り,ゲーデルの不完全性定理によってZFCが無矛盾であるならばZFCは自身の無矛盾性を証明することができません. ZFCが矛盾している可能性はあります. ZFCの無矛盾性に関しては, 一方でZFCを用いて多くの数学者が数学をしている中でまだ矛盾が見つかってないという傍証もあります.
仮に矛盾が見つかってしまった場合, その後の方向性はいくつか考えられます:
1. その矛盾の証明をよく調べて, その原因を取り除いてZFCより弱い新たな数学体系を構築する.
これに関しては普段の数学をする際にフルでZFCを使っているわけではないので,合理的なZFCより弱い体系を見つけることができればこれまでの数学を続けることができるかも知れません.
この場合は数学がどうなるか想像がつきません.数学にとって大打撃になると思います.
他にもZFC以外の別の数学の形式的な基礎づけを与えようという動きもあります. またZFCより改善させるような新しい体系,公理形を見つける方向の研究もあります.
哲学など数学以外のことは専門外のため,あくまで数学に関することだけ言及させていただきます.
ユークリッド幾何学に言及されているように数学の歴史は紀元前まで遡りますが,数学の形式化が意識され始めたのは1900年代以降と最近の話です. 主にヒルベルトによって主導されたものだと私は理解しています. (もちろん多くの数学者がこのプログラムに関わってきました. )数学の形式化や形式主義で調べると参考になると思います.
数学的な内容に関して言及したいことは多くありますが,かいつまんで述べさせていただきます.
(あくまでこれは元の記事が間違っているなどと主張しているわけではないです.現代の数学の考え方や雰囲気の一部を分かっていただければ幸いです. )
現代の形式化された数学は原理的には決められたルール(公理と推論規則)を用いて行われる一連の手続きです. それらの「意味」が何かは一旦全て忘れてください. ここで公理とはあらかじめ定められた記号列で, 推論規則とはいくつかの文字列を用いて新しい文字列を生み出す操作です, 例えば文字列A→BとAが与えられたときに文字列Bを得る操作があります.定理(数学的命題)とはこの操作によって生み出される文字列です. これらの操作は数学における証明を形式的に記述したものになっています.論理式などもこの形式化のもとで特定の条件を満たす文字列として定義されます. 例えば論理式Pの否定は¬Pという文字列です. (ここでは否定を表すための記号として¬という文字列を用いています. )
ここまで文字列だけを考えた形式的なものですが,構造やモデルを使うことによってこれらの文字列を解釈する(つまり意味を与える)ことができます. (詳細は省きます. )構造やモデルを定めることによって論理式の意味が一意的に定まります. またそれらの取り方を変えることによって意味が変わることもあります.
これの考え方によって(数学的な)意味は形式から分離されています.さらに気になる場合はゲーデルの完全性定理などを見てください.
そして適切な公理と推論規則を定めることにより数学そのものを形式的に扱うことできます. その適切な公理はツェルメロ-フレンケル集合論(ZFC)と呼ばれており,現在の数学者はこのZFCを用いて数学をしています. (一部,圏論などでZFCに収まらない議論があると聞きますが, それらもZFCの適切な拡張を考えることで解決できます. )
つまり, これまでに書かれた数学の証明などは全てこのZFCを用いることで文字列の操作に書き換えることができます.
一方で数学の論文は普段の言葉(自然言語)を使って書かれます. これは本当に全て文字列に書き換えることをした場合, 可読性が著しく落ち, また分量も膨大になるため人が読めないためです.しかし証明は自然言語で書きつつも, いざとなったら形式的に文字列に書き換えることができるという前提に立っています. そしてこれは理論的には可能であり,数学の厳密性を担保しています.
「定義の一意性」に関してですが私自身が元記事の要点を完全に理解しているわけではないのですが,数学に関していうとある数学的概念の定義が複数あることはよくあります. もちろんその複数ある定義が同値であることを証明されなければなりません. ここで同値というのはある数学的対象Aが定義Pと定義Qで与えられていた時に, 「Aが定義Pを満たすならば,定義Qを満たす. またAが定義Qを満たすならば定義Pを満たす. 」ということです. 実際に使う際には用途に合った定義を用いることになります. それらは同値なのでどれを選んでも問題ないです.
以上がざっくりとした形式化された数学に関してです. 参考になれば幸いです.
追記: これは筆者個人の考えですが,数学と哲学の議論はしっかりと分離してなされるべきだと考えています. もちろん相互の交流はなされるべきですが, 両者を混同するのは誤解や誤りの原因になると思います.
しかし、こういった商品は運びやすいように組み立て式になっており、しかもDIYしている気分になれるので一石二鳥なのです。
本棚を組み立て終わると、デスクの上に積んであった本の山をすっぽりと収めることができました。
というのも、私は数学愛好家なので、リファレンスとして数学書を大人買いしたいのです。
仕事柄、特に線形代数や離散最適化のような数学は使いますが、私が興味のあるのはそういった実用志向のアルゴリズムではありません。
むしろ取り組みたいのは、フェルマーの最終定理やラングランズ予想のような、一見すると実用からは遠いけれど、数学の本質を突くような深淵です。
数学には二種類の文化があり、アルゴリズム的な問題解決者と、深淵な理論を目指す者がいます。
プログラマーであればほぼ例外なく前者の立場になりますが、後者というのは「理論Aの理解のためにはBの理解が必要で、その理解にはCの理解が必要で、その理解のためには...」という階層が非常に深いものを表します。
私はいまだに、コホモロジーとはなんであるのかについてよくわからないのです。
コホモロジーをGPTに対し「小学生にもわかるように説明せよ」とやったものが以下です。
コホモロジーは、数学の中のとても難しい概念ですが、小学生にわかりやすく説明するために、一緒に想像の旅に出かけてみましょう。
まず、コホモロジーは、ある種の「形」や「パターン」を見つけるための道具と考えてみてください。例えば、あなたが宝探しをしていて、地図があるとします。この地図は、宝物がどこにあるかを示しています。しかし、この地図はただの紙切れで、宝物自体は地図にはありません。でも、地図を使って、宝物のありかを見つけることができますよね。
コホモロジーも同じようなものです。コホモロジーは、数学的な「地図」のようなもので、それを使って、数学の世界に隠された「宝物」を見つけることができます。この「宝物」は、数学の中の特定のパターンや形、構造などを指します。
しかし、コホモロジーはとても複雑で、大人でも理解するのが難しいです。だから、小学生のあなたがすぐに理解できなくても大丈夫です。大切なのは、コホモロジーのような難しい概念に挑戦する勇気と、学び続ける意欲を持つことです。これからも、色々なことに興味を持ち、学び続けてくださいね!。
これじゃあ、なにも理解していないのと同じでしょう。結局、深淵を理解するためには地道な努力が必要です。
理論構築者の観点からみると、数学は登山に似ていると思います。
コホモロジーにたどり着くためには、集合論、群論、位相幾何学、ホモロジー理論と順を追っていかなければならないのです。
これまでの私は、理論構築者ではなく、問題解決者だったので、「問題」という単位で物事を理解してきました。
アルゴリズムなので、問題を解くための前提知識はさほど必要なく、むしろ必要なのはIQです。
ところが、ラングランズプログラムや超弦理論といった深淵は、IQに加えて、山登りの体力や努力や時間が必須になります。
しかも、仮に山を登り終えたとしても、プログラマーの仕事としてなんの役にも立たないのです。
深淵に取り組むというのは、そういう廃人的な努力を必要とするので、職業的な数学者でない限り努力の誘因が失われてしまいます。
深淵な登山をして、誰にも認められることなく自己満足して、何が楽しいのでしょうか。
結局、理解した物事を外側に発信(例えば論文執筆)して社会との接点を作らなければ、本当の廃人になってしまうでしょう。
ここ最近、ChatGPTのプロンプトをひたすら書きまくってるのだが分かってきたことがある
恐らく近い将来ChatGPTによって大半のプログラマーは職を失うことになるだろうし
残されたプログラマーもソースコードを書くのでは無くてプロンプトを書くことの方が増えるだろう
アセンブリ言語を書いてる人はほぼ死滅しているしCやC++ですら書いてる人は少ない
同様にプロンプトを書く人(プロンプター)が重宝されるようになるのだろう(もちろん例外的分野は存在する)
ただ、残念ながらプログラマーや非プログラマーがプロンプターになれるかというとそうではない
プロンプトを書く時に必要なのは、純粋にプログラマーが必要とされている能力の部分だからだ
その言語を知ってるだとかライブラリを知っているといった知識的な能力ではなくて
要件定義の能力や論理演算や集合論みたいな知識だったりオブジェクト指向や関数的な考え方だけが純粋に必要になる
例えば割とダメダメプログラマーは条件が100個あった時に普通にIF文を100個書く
こういうプログラマーはプロンプトを作ることができないし、仮に書いたとしてもまともに動かない
ちゃんとしたプログラマーは条件100個を整理してまず2つの場合に分けてそれぞれで3つに分け・・・みたいなことをする
場合によっては要件定義を鑑みて必要無い条件を削除する(もちろん確認の上で)
そういった整理整頓が出来る人じゃないとプロンプトを書くことは不可能なので
例えばPythonの書き方を知っているだけのプログラマーとかコピペで生きてきたプログラマーは死滅すると思う
彼らはプロンプトを書けないし、書くために学習しようとしてもベースとなっているものが無いのでそこから覚え直すしかない
なのでプログラマーの上位層はプロンプターとして生き残るが下位層は死滅するし、残念ながらプロンプター教室というのもちょっと想像が付かないしたぶん不可能だと思う
シュレーディンガーはアインシュタインに宛てて、量子力学のコペンハーゲン解釈の重大な欠陥を明らかにするために、架空の実験装置を作った。この解釈では、量子系は外部の観測者と相互作用するまで、2つ以上の状態の重ね合わせに留まるとされる[1]。
この効果を、原子というミクロな世界の特殊性として片付けることはできるかもしれないが、その世界が、テーブルや椅子、猫といったマクロな日常世界に直接影響を及ぼすとしたらどうだろうか。シュレーディンガーの思考実験は、それを明らかにすることで、量子力学のコペンハーゲン解釈の不条理を明らかにしようとした。 粒子が重ね合わされた状態にあることは、一つの事実だ。しかし猫はどうだろう。猫はどちらか一方にしか属さないし、死んだり生きていたりもしない。
ガイガーカウンターの中に、ほんの少しの放射性物質が入っていて、1時間のうちに原子の1つが崩壊するかもしれないが、同じ確率で1つも崩壊しないかもしれない。このシステム全体を1時間放置しておくと、その間、原子が崩壊していなければ、猫はまだ生きていると言うだろう。システム全体のΨ関数(波動関数)は、その中に生きている猫と死んだ猫(表現は悪いが)が等しく混ざり合っていることで、このことを表現している。
この思考実験の意味合いについては、多くの現代的な解釈や読み方がある。あるものは、量子力学によって混乱した世界に秩序を取り戻そうとするものである。また、複数の宇宙で複数の猫が生まれると考えるものもあり、「重ね合わせられた猫」がむしろ平凡に見えてくるかもしれない。
通常の話では、波動関数は箱入りのネコを記述する。QBismでは、箱を開けたら何が起こるかについてのエージェントの信念を記述する。
例えば、Aさんがギャンブラーだとしよう。ネコの生死を賭けたいが、量子波動関数が最も正確な確率を与えてくれることを知っている。しかし、世の中には波動関数のラベルがない。自分で書き留めなければならない。自由に使えるのは、Aさん自身の過去の行動とその結果だけである。なので結果として得られる波動関数は、独立した現実を反映したものではない。世界がAさんにどう反応したかという個人的な歴史なのだ。
今、Aさんは箱を開けた。死んだ猫、あるいは生きている猫を体験する。いずれにせよ、Aさんは自分の信念を更新し、将来の出会いに期待するようになる。他の人が不思議な「波動関数の崩壊」と呼ぶものは、QBistにとっては、エージェントが自分の 賭けに手を加えることなのだ。
重ね合わせを形成するのはエージェントの信念であり、その信念の構造から猫について何かわかる。なぜなら、波動関数は、エージェントが箱に対して取り得るすべての行動(相互に排他的な行動も含む)に関する信念をコード化しており、Aさんの信念が互いに矛盾しない唯一の方法は、測定されていない猫に固有の状態が全く存在しない場合だからである。
QBistの話の教訓は,ジョン・ホイーラーの言葉を借りれば参加型宇宙であるということである。
2. ボーミアンについて
量子力学のコペンハーゲン解釈によれば、電子のような量子粒子は、人が見るまで、つまり適切な「測定」を行うまで、その位置を持たない。シュレーディンガーは、もしコペンハーゲン解釈が正しいとするならば、電子に当てはまることは、より大きな物体、特に猫にも当てはまることを示した:猫を見るまでは、猫は死んでいないし生きていない、という状況を作り出すことができる。
ここで、いくつかの疑問が生じる。なぜ、「見る」ことがそんなに重要なのか?
量子力学には、ボーム力学というシンプルでわかりやすい版があり、そこでは、量子粒子は常に位置を持っている。 猫や猫の状態についても同様だ。
なぜ物理学者たちは、シュレーディンガーの猫のような奇妙でありえないものにこだわったのだろうか?それは、物理学者たちが、波動関数による系の量子的な記述が、その系の完全な記述に違いないと思い込んでいたからである。このようなことは、最初からあり得ないことだと思われていた。粒子系の完全な記述には、粒子の位置も含まれるに違いないと考えたのである。 もし、そのように主張するならば、ボーミアン・メカニクスにすぐに到達する。
シュレーディンガーの猫の本当の意味は、実在論とは何の関係もないと思う人もいる。それは、知識の可能性と関係があるのだ。問題は、量子世界が非現実的であることではなく、量子系を知識の対象として安定化できないことである。
通常の知識の論理では、私たちの質問とは無関係に、知るべき対象がそこに存在することが前提になる。しかし、量子の場合、この前提が成り立たない。量子力学的なシステムに対して、測定という形で問いを投げかけると、得られる答えに干渉してしまう。
これらの本質的な特徴は「反実仮想」であり、何があるかないか(現実)ではなく、何が可能か不可能かについてである。実際、量子論の全体は反実仮想の上に成り立っている。反実仮想の性質は、量子論の運動法則よりも一般的であり、より深い構造を明らかにするものだからだ。
量子論の後継者は、運動法則は根本的に異なるかもしれないが、反実仮想の性質を示すことで、重ね合わせやエンタングルメント、さらには新しい現象が可能になるだろう。
シュレーディンガーは、仮想的な猫の実験で何を言いたかったのだろうか?現在では、シュレーディンガーは、量子論は、猫が死んでも生きてもいない浮遊状態にある物理的可能性を示唆していると主張したと一般に言われている。しかし、それは正反対である。シュレーディンガーは、そのようなことは明らかに不合理であり、そのような結果をもたらす量子論を理解しようとする試みは拒否されるべきであると考えたのである。
シュレーディンガーは、量子力学の波動関数は、個々のシステムの完全な物理的記述を提供することはできないと主張したアインシュタイン-ポドロスキー-ローゼンの論文に反発していたのである。EPRは、遠く離れた実験結果の相関関係や「spooky-a-distance(不気味な作用)」に着目して、その結論を導き出したのである。
シュレーディンガーは、2つの前提条件と距離効果とは無関係に、同じような結論に到達している。彼は、もし1)波動関数が完全な物理的記述を提供し、2)それが「測定」が行われるまで常に彼自身(シュレーディンガー)の方程式によって進化するなら、猫はそのような状態に陥る可能性があるが、それは明らかに不合理であることを示したのだ。したがって、ジョン・ベルの言葉を借りれば、「シュレーディンガー方程式によって与えられる波動関数がすべてではないか、あるいは、それが正しくないかのどちらか」なのである。
もし、その波動関数がすべてでないなら、いわゆる「隠れた変数」を仮定しなければならない(隠れていない方が良いのだが)。もし、それが正しくないのであれば、波動関数の「客観的崩壊」が存在することになる。以上が、Schrödingerが認識していた量子力学的形式を理解するための2つのアプローチである。いわゆる「多世界」解釈は、1も2も否定せずにやり過ごそうとして、結局はシュレーディンガーが馬鹿にしていた結論に直面することになる。
シュレーディンガーの例は、量子システムの不確定性をミクロの領域に閉じ込めることができないことを示した。ミクロな系の不確定性とマクロな系の不確定性を猫のように絡ませることが考えられるので、量子力学はミクロな系と同様にマクロな系にも不確定性を含意している。
問題は、この不確定性を形而上学的(世界における)に解釈するか、それとも単に認識論的(我々が知っていることにおける)に解釈するかということである。シュレーディンガーは、「手ぶれやピンボケの写真と、雲や霧のスナップショットとは違う」と指摘し、量子不確定性の解釈はどちらも問題であるとした。量子もつれは、このように二律背反の関係にある。
ベルが彼の定理を実験的に検証する前、量子力学の技術が発展し、もつれ状態の実在性を利用し、巨視的なもつれシステムを作り出す技術が開発される前、形而上学的な雲のオプションはテーブルから外されるのが妥当であった。しかし、もしもつれが実在するならば、それに対する形而上学的な解釈が必要である。
波動関数実在論とは、量子系を波動関数、つまり、死んだ猫に対応する領域と生きた猫に対応する領域で振幅を持つように進化しうる場と見なす解釈のアプローチである。シュレーディンガーが知っていたように、このアプローチを真面目に実行すると、これらの場が広がる背景空間は、量子波動関数の自由度を収容できる超高次元空間となる。
6. 超決定論について
不変集合論(IST)は、エネルギーの離散的性質に関するプランクの洞察を、今度は量子力学の状態空間に再適用することによって導き出された量子物理学のモデルである。ISTでは、量子力学の連続体ヒルベルト空間が、ある種の離散的な格子に置き換えられる。この格子には、実験者が量子系に対して測定を行ったかもしれないが、実際には行わなかったという反実仮想の世界が存在し、このような反実仮想の世界は格子の構造と矛盾している。このように、ISTは形式的には「超決定論」であり、実験者が行う測定は、測定する粒子から独立しているわけではない。
ISTでは、ISTの格子上にある状態は、世界のアンサンブルに対応し、各世界は状態空間の特別な部分集合上で進化する決定論的系である。非線形力学系理論に基づき、この部分集合は「不変集合」と呼ばれる。格子の隙間にある反実仮想世界は、不変集合上には存在しない。
アインシュタインは、量子波動関数は、不気味な距離作用や不確定性を持たない世界のアンサンブルを記述していると考えていたが、これは実現可能である。特に、シュレーディンガーの猫は、死んでいるか生きているかのどちらかであり、両方ではないのだ。
シュレーディンガーの猫の寓話に混乱をもたらしたのは、物理システムが非関係的な性質を持つという形而上学的仮定である。 もし全ての性質が関係的であるならば、見かけ上のパラドックスは解消されるかもしれない。
猫に関しては、毒が出るか出ないか、猫自身が生きているか死んでいるかである。しかし、この現象は箱の外にある物理系には関係ない。
箱の外の物理系に対しては、猫が起きていても眠っていても、猫との相互作用がなければその性質は実現されず、箱と外部系との将来の相互作用には、原理的に、猫がその系に対して確実に起きていたり確実に眠っていたりした場合には不可能だった干渉作用が含まれる可能性があるからだ。
つまり「波動関数の崩壊」は、猫が毒と相互作用することによって、ある性質が実現されることを表し、「ユニタリー進化」は、外部システムに対する性質の実現確率の進化を表すのである。 これが、量子論の関係論的解釈における「見かけのパラドックス」の解決策とされる。
8. 多世界
物理学者たちは古典物理学では観測された現象を説明できないことに気づき、量子論の現象論的法則が発見された。しかし、量子力学が科学的理論として受け入れられるようになったのは、シュレーディンガーが方程式を考案してからである。
シュレーディンガーは、自分の方程式を放射性崩壊の検出などの量子測定の解析に適用すると、生きている猫と死んでいる猫の両方が存在するような、複数の結果が並列に存在することになることに気づいた。実はこの状況は、よく言われるように2匹の猫が並列に存在するのではなく、生きている1匹の猫と、異なる時期に死んだ多数の猫が並列に存在することに相当する。
このことは、シュレーディンガーにとって重大な問題であり、量子測定中に量子状態が崩壊することによって、量子系の進化を記述する方程式としての普遍的な有効性が失われることを、彼は不本意ながら受け入れた。崩壊は、そのランダム性と遠方での作用から、受け入れてはならないのだろうか。その代わりに、パラレルワールドの存在が示されれる。これこそが、非局所的な作用を回避し、自然界における決定論を守る一つの可能性である。