Movatterモバイル変換


[0]ホーム

URL:


はてラボはてな匿名ダイアリー
ようこそ ゲスト さんログインユーザー登録

「集合論」を含む日記RSS

はてなキーワード:集合論とは

次の25件>

2025-10-21

数学の分類はこんな感じか

フェミニズムの分類が多すぎると聞いて

anond:20251020210124

0. 基礎・横断

集合論

公理集合論(ZFC, ZF, GCH, 大きな基数)

記述集合論(Borel階層, Projective階層, 汎加法族)

強制法フォーシング),相対的一致・独立

理論理学

述語論理(完全性定理,コンパクト性)

モデル理論(型空間, o-極小, NIP, ステーブル理論

証明論(序数解析,カット除去,直観主義論理

再帰理論/計算可能性(チューリング度, 0′, 相対計算可能性)

圏論

関手自然変換, 極限/余極限

加群圏,アーベル圏,三角圏,派生

トポス論,モナド,アジュンクション

数学基礎論哲学

構成主義,直観主義,ユニバース問題,ホモトピー型理論(HoTT)

1.代数学

群論

組み合わせ群論(表示, 小石定理,自由群)

代数群/リー群表現, Cartan分解,ルート系)

幾何群論ハイパーリック群, Cayleyグラフ

環論

可換環論(イデアル,局所化,次元理論, 完備化)

可換環アルティン環, ヘルシュタイン環, 環上加群

体論・ガロア理論

体拡大, 分解体,代数独立, 有限体

表現

群・リー代数表現(最高ウェイト,カズダン–ルスティグ)

既約表現,調和解析との関連,指標

ホモロジー代数

射影/入射解像度, Ext・Tor,派生関手

K-理論

アルバースカルーア理論, トポロジカルK, 高次K

線形代数

ジョルダン標準形,特異値分解,クリフォード代数

計算代数

Gröbner基底,多項式時間アルゴリズム,計算群論

2. 数論

初等数論(合同, 既約性判定,二次剰余)

代数的数論(代数体, 整環,イデアル類群,局所体)

解析数論(ゼータ/ L-関数,素数定理,サークル法, 篩法)

p進数論(p進解析, Iwasawa理論, Hodge–Tate)

算術幾何楕円曲線, モジュラー形式,代数多様体の高さ)

超越論(リンマンヴァイエルシュトラス, ベーカー理論

計算数論(楕円曲線法,AKS素数判定, 格子法)

3. 解析

実解析

測度論・ルベーグ積分, 凸解析,幾何的測度論

複素解析

変数リーマン面, 留数, 近似定理

変数(Hartogs現象, 凸性, severalcomplex variables)

関数解析

バナッハ/ヒルベルト空間,スペクトル理論, C*代数, von Neumann代数

調和解析

フーリエ解析,Littlewood–Paley理論, 擬微分作用素

確率解析

マルチンゲール,伊藤積分, SDE,ギルサノフ, 反射原理

実関数論/特殊関数

ベッセル, 超幾何,直交多項式, Rieszポテンシャル

4.微分方程式力学系

常微分方程式(ODE)

安定性,分岐, 正準系,可積分系

偏微分方程式(PDE)

楕円型(正則性,変分法, 最小曲面)

放物型(熱方程式, 最大原理, Harnack)

双曲型(波動, 伝播, 散乱理論

非線形PDE(Navier–Stokes, NLS, KdV, Allen–Cahn)

幾何解析

リッチ流, 平均曲率流,ヤンミルズ,モノポールインスタント

力学系

エルゴード理論(Birkhoff, Pesin),カオス, シンボリック力学

ハミルトン力学,KAM理論,トーラス崩壊

5.幾何学・トポロジー

位相幾何

点集合位相,ホモトピーホモロジー, 基本群,スペクトル系列

幾何トポロジー

3次元多様体幾何化, 結び目理論,写像類群)

4次元トポロジー(Donaldson/Seiberg–Witten理論

微分幾何

リーマン幾何(曲率,比較幾何,有界幾何

シンプレクティック幾何(モーメント写像, Floer理論

複素/ケーラー幾何(Calabi–Yau, Hodge理論

代数幾何

スキーム, 層・層係数コホモロジー, 変形理論, モジュライ空間

有理幾何(MMP, Fano/一般型,代数曲線/曲面)

離散幾何・凸幾何

多面体, Helly/Carathéodory,幾何極値問題

6.組合せ論

極値組合せ論(Turán型, 正則性補題

ランダムグラフ/確率方法(Erdős–Rényi, nibble法)

加法組合せ論(Freiman, サムセット, Gowersノルム)

グラフ理論

彩色,マッチング,マイナー理論(Robertson–Seymour)

スペクトルグラフ理論,拡張グラフ

組合設計ブロック設計, フィッシャーの不等式)

列・順序・格子(部分順序集合, モビウス反転)

7.確率統計

確率論(純粋

測度確率, 極限定理, Lévy過程, Markov過程, 大偏差

統計

数理統計推定, 検定, 漸近理論,EM/MD/ベイズ

ベイズ統計MCMC, 変分推論, 事前分布理論

多変量解析(主成分, 因子,判別,正則化

ノンパラメトリックカーネル法, スプライン,ブーストラップ

実験計画/サーベイ,因果推論(IV,PS,DiD,SCM

時系列(ARIMA,状態空間, Kalman/粒子フィルタ

確率最適化/学習理論

PAC/VC理論,一般境界,統計学習

バンディット,オンライン学習,サンプル複雑度

8.最適化オペレーションリサーチ(OR)

凸最適化

二次計画, 円錐計画(SOCP,SDP),双対性,KKT

凸最適化

多峰性, 一階/二階法, 低ランク,幾何的解析

離散最適化

整数計画,ネットワークフロー, マトロイド, 近似アルゴリズム

確率的/ロバスト最適化

チャンス制約,分布ロバスト,サンプル平均近似

スケジューリング/在庫/待ち行列

Little法則, 重み付き遅延, M/M/1, Jackson網

ゲーム理論

ナッシュ均衡,進化ゲーム,メカニズムデザイン

9. 数値解析・計算数学科学計算

数値線形代数(反復法,直交化, プリコンディショニング)

常微分方程式の数値解法(Runge–Kutta,構造保存)

PDE数値(有限要素/差分/体積,マルチグリッド

誤差解析・条件数,区間演算,随伴

高性能計算HPC)(並列アルゴリズム,スパー行列

シンボリック計算(CAS,代数的簡約, 決定手続き

10.情報計算暗号(数理情報

情報理論

エントロピー,符号化(誤り訂正, LDPC,Polar), レート歪み

暗号理論

公開鍵RSA,楕円曲線, LWE/格子),証明可能安全性,MPC/ゼロ知識

計算複雑性

P vsNP,ランダム化・通信・回路複雑性,PCP

アルゴリズム理論

近似・オンライン確率的,幾何アルゴリズム

機械学習の数理

カーネル法, 低次元構造, 最適輸送, 生成モデル理論

11. 数理物理

古典/量子力学の厳密理論

C*代数量子論, 散乱, 量子確率

量子場の数理

くりこみ群,構成的QFT, 共形場理論CFT

統計力学の数理

相転移, くりこみ, Ising/Potts, 大偏差

可積分系

逆散乱法,ソリトン, 量子可積分モデル

理論幾何

鏡映対称性,Gromov–Witten, トポロジカル弦

12.生命科学医学社会科学への応用数学

数理生物学

集団動態,進化ゲーム, 反応拡散,系統樹推定

数理神経科学

スパイキングモデル,ネットワーク同期, 神経場方程式

疫学感染症数理

SIR系,推定制御, 非均質ネットワーク

計量経済金融工学

裁定,確率ボラ,リスク測度, 最適ヘッジ, 高頻度データ

社会ネットワーク科学

拡散, 影響最大化,コミュニティ検出

13.シグナル・画像データ科学

信号処理

時間周波数解析,スパー表現,圧縮センシング

画像処理/幾何処理

変動正則化, PDE法, 最適輸送, 形状解析

データ解析

多様体学習,次元削減, トポロジカルデータ解析(TDA

統計機械学習回帰/分類/生成,正則化, 汎化境界

14.教育歴史方法

数学教育学(カリキュラム設計, 誤概念研究,証明教育

数学史(分野別史,人物研究,原典講読)

計算支援定理証明

形式数学(Lean,Coq, Isabelle), SMT,自動定理証明

科学哲学数学実在論/構成主義,証明発見心理

Permalink |記事への反応(0) | 10:29

このエントリーをはてなブックマークに追加ツイートシェア

2025-10-18

dorawii@執筆依頼募集中

田中計算論理入門とかバリバリ理解できるのか。それともそういう人でもこのレベルの専門書はだましだまし読んで理解した気になればいいって部分で済ませてる人多いのか

いやこれは割と初心者向けで記述集合論概説のほうがハードか。

-----BEGINPGP SIGNEDMESSAGE-----Hash: SHA512https://anond.hatelabo.jp/20251018151013# -----BEGINPGP SIGNATURE-----iHUEARYKAB0WIQTEe8eLwpVRSViDKR5wMdsubs4+SAUCaPMvRgAKCRBwMdsubs4+SDsDAQDO/LizbstDU3AXtQilRe1JWHR1oQL7YSMmWKVrvopwzwD/fjimjQk4lfP06dmpnpxO7oo0l8sfQ00UhkwzW8ws7Ac==ix0l-----ENDPGP SIGNATURE-----

Permalink |記事への反応(2) | 15:10

このエントリーをはてなブックマークに追加ツイートシェア

2025-10-05

anond:20251005154445

はてな記法覚えなきゃな。

>それをUaとUbと書くのは、普通集合論ではできない(UaとUbは同じXの元で定義されるものではない)、

それはごもっとも。

集合っぽく書いた私が悪かった。Ubはその性質から集合の元にはなり得ないので、そこは貴方の言う通り。

Ubは人間認知フレームFから構造的に到達できない外部、と考えてください。

>つまりあなたの証明?のような形式的にX外の存在を示すことはX内部の論理ではできない。と思うよ

X内の話です。

私はUbの存在を”示して”ないんですね。そもそも示せないので。

「X全体」に対して言及すると、存在否定できないUbが含まれますよ、という話。

Permalink |記事への反応(1) | 15:56

このエントリーをはてなブックマークに追加ツイートシェア

anond:20251005153621

あなたはFを関数と見ているが、我々に認識できる世界体系がXではないのかな?

Xの中で、Xのロジックを使って、X外のことがわからないのはその通りだけど、それをUaとUbと書くのは、普通集合論ではできない(UaとUbは同じXの元で定義されるものではない)、つまりあなたの証明?のような形式的にX外の存在を示すことはX内部の論理ではできない。と思うよ

Permalink |記事への反応(1) | 15:44

このエントリーをはてなブックマークに追加ツイートシェア

[日記]

昨日は、僕の週間ルーティンの中でも最も重要整合性検証日だった。つまり宇宙がまだ局所的に論理的であるかを確認する日だ。

朝7時ちょうどに起床し、ベッドの角度を壁と垂直に再測定した結果、誤差は0.03度。つまり宇宙はまだ僕を裏切っていない。

朝食の時間ルームメイトトースターを再び二枚焼きモードにしたが、今回は驚かなかった。僕は冷静に、バナッハ=タルスキ分割の話を持ち出してこう言った。

「君のパンは二枚に見えるが、集合論的には同一だ。したがって、君の誤りは物理ではなく測度論の問題だ。」

彼は黙ってパンをかじった。理解されることを期待するのは、もはやハイゼンベルク的非決定性と同義だ。

午前中は、僕の新しい理論ホモトピー圏上の自己参照的弦圏理論」の検証を進めた。

通常の超弦理論がカテガリー的に整合するのは、D-ブレーンが導くモジュライ空間の滑らかさが保証されている範囲内に限られる。

しかし僕は最近、滑らかさという仮定のものを削除し、「∞-圏上のA∞代数自己整合性条件」に置き換えるべきだと気づいた。

まり、弦のダイナミクスを場の配置空間ではなく、「圏の自己ホモトピー類」として定義するのだ。すると興味深いことに、背景幾何消滅し、すべての次元は内部的モノイダ構造に吸収される。

言い換えれば、「空間」とはただの圏論的影であり、時空の実在は「自然変換の連続体」そのものになる。

これが僕の提案する“Self-fibrantString Hypothesis”だ。ウィッテンが読んだら、きっと静かに部屋を出ていくに違いない。

昼過ぎ、隣人がまた廊下で大声で電話していたので、僕はノイズキャンセリングヘッドフォンを装着し、同時に空気清浄機を「ラグランジュ安定モード」に切り替えた。

これは僕が改造した設定で、空気の流速が黄金比比率(φ:1)になるよう調整されている。これにより室内の微粒子分布が準結晶構造に近似され、精神的平衡が保たれる。

僕は自分の心の状態を量子的可換代数で表すなら、ほぼ可換な冪零理想の中にあるといえる。隣人は理解していないが、それは仕方ない。彼女精神空間は可約表現のままだ。

午後は友人たちとオンラインでEldenRingを再プレイした。僕は魔術師ビルドで、ルーン経済を「局所理論の再正則化問題」として再解釈している。

彼らがボスを倒すたびに叫ぶのを聞きながら、僕は心の中でリーマン面の分枝構造を追跡していた。実はEldenRingの地形構成リーマン面切り貼りに似ており、特にリエニール湖の設計は2次被覆の非自明な例として見ることができる。

開発者意図していないことはわかっているが、現象としては美しい。芸術とは本質的に、トポス自己鏡映だ。

夜、僕はコーヒーを淹れ、久々にグロタンディークのRécolteset Semaillesを読み返した。数学者自分の「精神幾何学」について語る箇所を読むと、僕の理論的中枢が共振する。

グロタンディークが述べた「点は存在しない、ただ開集合がある」という思想は、僕の弦理論観と同じだ。物理対象とは「開集合上の自然変換」に過ぎず、存在とは測度可能性の仮構にすぎない。つまり宇宙とは「圏論良心」だ。

深夜、ルームメイトが僕の部屋をノックして「一緒に映画を観ないか」と言った。僕は「今日自己同型群の可換性検証を行う予定だ」と答えたが、彼は肩をすくめて去った。

代わりに、僕はブレードランナー2049のBlu-ray再生し、壁紙色温度を劇中のネオン発光スペクトル(中心波長602nm)に合わせた。

完全な没入体験のために、部屋の空気を2.3ppmのオゾン濃度に調整した。呼吸するたびに、僕は自分物質ではなく関手の束だと実感する。

Permalink |記事への反応(0) | 11:42

このエントリーをはてなブックマークに追加ツイートシェア

2025-09-29

anond:20250929162608

一般人のよくある言い回しとして「大学数学科でやっているのは数学ではなく哲学だ」というものがあります。これは実態を誤解したものと考えます数学哲学論理構造依拠する原理の違いに着目し、どのように誤解であると言えるかを解説してください。

以下の観点から解説します。

---

## 1. 「数学哲学」という素朴なイメージの背景

多くの人が「大学数学科は“哲学的なこと”をしている」と感じるのは、次のような体験的印象に基づいています

**抽象度の高さ**

学校数学数値計算や図形、方程式など具体的な操作が多いですが、大学では集合・位相・群・環などの抽象概念が中心になります実体がない記号を扱うため、「思弁的で現実離れしている」という印象を受けやすい。

**証明の重視**

高校までの数学では、公式定理を使って問題を解くことが主でした。大学数学では定理を“証明する”こと自体が中心になります演繹的に進むため、哲学の論証と混同されやすい。

**直感に反する結果**

カントール集合やゲーデル不完全性定理など、常識を裏切る結論出会うと「これはもはや哲学では?」と感じがちです。

こうした印象から数学哲学」という言い回しが出てきます

---

## 2.数学哲学論理構造の違い

### (1)数学は**公理的体系+形式的推論**

数学ではまず**公理系**(集合論論理体系など)を定め、そこから**形式的定義定理を導く**ことが中心です。

証明論理整合性のもとに、有限の推論ステップで厳密に完結します。

「真偽」は定められた公理系の内部で決まる(たとえば ZFC の下での定理かどうか)。

### (2)哲学は**前提の妥当性そのもの問題化**

哲学では「公理」や「定義」の選び方自体が主要な思考対象です。

例:真理とは何か、存在とは何か、数学の基盤は何に依拠するか。

推論自体論理を用いますが、**議論目的は推論よりも前提や概念意味吟味すること**にあります

証明可能性よりも「概念的・認識論的な一貫性」を探ります

### 要するに:

数学は**選んだ前提の内部で閉じた演繹体系**。

哲学は**前提や体系そのものを開かれた問いとして扱う**。

---

## 3.依拠する「原理」の差

数学哲学
----- ---------------- ----------------
基盤公理定義形式論理 推論+概念分析経験メタ理論
真理の基準公理系内の定理妥当性・合理性批判検討
方法定義補題定理→系の形式的構築問題設定→概念批判異論との対話
ゴール 内部一貫性定理発見 前提の吟味概念明確化

---

## 4. 誤解が生じる理由反駁

1. **抽象化=哲学化ではない**

数学抽象化は「より多くの具体例を統一的に扱う」ための道具です。たとえば群論は「対称性」という実際的現象一般化しています現実逃避ではなく応用力の拡張です。

2. **証明形式性は哲学よりも厳密**

哲学議論自然言語意味依存しますが、数学証明形式言語に還元可能レベルまで精密化されます

3. **大学数学目標は“真理の条件”の探求ではない**

哲学は「数学の基礎は何か」「無限とは何か」を問うかもしれませんが、数学科学生が行うのは、すでに受け入れた公理体系の中で定理を立てる作業です。

---

## 5. まとめ

数学科でやっているのは数学ではなく哲学だ」という見方は、

抽象度の高さや証明重視の新鮮さを「哲学的」と感じているに過ぎない

実際には**数学は厳密な公理体系の中での定理の探求**であり、前提の批判概念意味のものを問う哲学とは方法目標も異なる

したがってこの言い回しは**印象論的な誤解**であり、数学実態を正確に捉えていません。

Permalink |記事への反応(0) | 16:31

このエントリーをはてなブックマークに追加ツイートシェア

2025-06-28

単語定義をどこまで掘り下げれば理解したことになるの?

この質問は、定義無限後退という問題に関連しています。数理論理学では、この問題解決するためにいくつかの方法や考え方があります

1. 原始概念

理論理学特に公理集合論形式体系)では、すべての概念定義しようとすると無限後退に陥るため、いくつかの基本的概念を無定義、すなわち「原始概念」として受け入れます

これらの概念はそれ以上定義されず、公理によってその性質規定されます

例えば、ユークリッド幾何学における「点」「線」「平面」などがこれに当たります

これらは定義されず、公理(例:「異なる二点を通る直線はただ一つ存在する」)によってその関係や振る舞いが規定されます

理論理学文脈では、例えば「集合」「要素」「論理結合子(AND, OR, NOT)」などが原始概念とされることがあります

2.公理定義

原始概念は、直接的な定義ではなく、公理によってその意味性質が与えられます

公理とは、その体系内で真である仮定される基本的命題です。

これらの公理を通して、原始概念間の関係や、それらから構築される概念性質が暗黙的に定義されます

例:ペアノの公理自然数論)

自然数「0」、後者関数「S(x)」を原始概念として、以下の公理を設定します。

1. 0 は自然数である

2.任意自然数 x に対して、S(x) は自然数である

3.任意自然数 x に対して、S(x) ≠ 0である

4.任意自然数 x, y に対して、S(x) = S(y) ならば x = yである

5.任意の集合 K について、0 ∈ K かつ「任意自然数 x に対して x ∈ K ならば S(x) ∈ K」が成り立つならば、すべての自然数は K に属する。(数学的帰納法原理

これらの公理によって、「自然数」「0」「後者関数」という概念が間接的に、しかし厳密に定義されます

3. 循環定義回避形式

厳密な形式体系においては、循環定義無限後退を避けるために、定義階層を明確にすることが重要です。

4. 基礎付けの概念

現代の数理論理学特に集合論では、ツェルメロ=フレンケル集合論(ZFC)などの公理系が、数学ほとんどすべての概念を基礎づけるものとして広く受け入れられています

ZFCは、「集合」という原始概念と、いくつかの公理外延公理空集合公理、対の公理、和集合公理、冪集合公理無限公理、置換公理、基礎の公理選択公理から構成されます

これらの公理によって、数学対象(数、関数関係など)がすべて集合として構成され、その性質集合論の枠組みの中で厳密に記述されます

まとめ

X1とは?」「X2とは?」といった定義無限後退は、数理論理学においては、最終的に原始概念に到達し、それらの概念公理によってその性質規定されることで解決されます

まり、すべての概念定義し尽くすのではなく、一部の基本的概念を無定義として受け入れ、その関係性を公理によって厳密に定めることで、論理体系全体の基礎を築いています

Permalink |記事への反応(0) | 08:22

このエントリーをはてなブックマークに追加ツイートシェア

2025-06-07

anond:20250606004547

弱い集合論、強い集合論

Permalink |記事への反応(0) | 17:59

このエントリーをはてなブックマークに追加ツイートシェア

2025-05-12

世間が俺にとって興味のないことばかり話してる

もっとないの?抽象数学とか超弦理論とかさぁ。

どうして世の中は、ここまでまでにも低次元話題で満たされているんだろう?

天気、芸能、噂話、表層的な政治のやりとり。知性の対流はどこに消えた?

人間は有限な脳リソースを持っているのに、その99%がどうでもいい入力で埋め尽くされてる現実は、もはや精神的な浪費だ。

例えば、なぜ誰も「グロタンディーク宇宙」を話題にしない?あれはもはや数学という言語を超えて、存在論のもの接続するスキームだ。

集合論の上に成り立つ古典的数学構造から自由になろうとした、その大胆さと深淵さは、まるで物理法則の背後にある数学的美の亡霊を追いかけるようなものだ。

それとも、「カルツァ=クライン理論」を掘り下げた上で、「コンパクト化の自由度」が我々の時空構造に与える哲学的意味について会話できる人間はもう絶滅したのか?

量子重力理論の融合問題特にループ量子重力超弦理論アプローチ根本差異を語れる人と飲みに行きたいんだよ、俺は。

物質本質的情報だという観点からブラックホール情報パラドックス意味するのは「情報の保存則の破れ」なのか、それとも我々が持っている「情報とは何か」という定義の方が間違っているのか。

こういう問いこそが、文明の核心にあるべきだろう?

人間文明を築いて以来、我々は「どこから来て、どこへ行くのか」を形式体系で問おうとしてきた。

自然数に対して加法乗法定義し、ペア公理系を構築し、それが完全でも無矛盾でもないことをゲーデル証明した時点で、真理は証明可能性の外に存在することが明らかになった。

この衝撃から回復するどころか、世間ますます計算可能ものアルゴリズムで消費できるものしか興味を持たなくなった。

何のために意識進化したのか?それが単なる環境適応副産物だと片付けるには、意識認識する数学対象精緻さがあまりにも過剰だ。

なぜラマヌジャンは夢の中で未知の関数恒等式発見できたのか?なぜヒルベルト空間のような抽象概念が、量子力学の基礎としてこれほど自然振る舞うのか?

この「抽象現実接続」が偶然である可能性は、論理的ほとんどゼロに近い。

俺が求めているのは、「真に知的対話」だ。知識をなめらかな面として持っているだけの人間ではなく、それを自己組織化的に再構築できるような構造的知性。

話題トポス理論からエントロピー最大化原理に移行しても違和感なくついてこれるような、そんな会話。

少なくとも「その場のノリ」とか「空気を読む」なんていう神経消耗ゲームよりは、よほど脳が報酬系を刺激されるはずだ。

いつになったら、街角のカフェで「カテナリー曲線の最小作原理が、実は一般相対論と繋がってるって知ってた?」なんて会話が自然に聞こえる社会になるんだろうな。

Permalink |記事への反応(1) | 02:03

このエントリーをはてなブックマークに追加ツイートシェア

2025-03-22

anond:20250322155921

集合論とか苦手だった?

それとも文系高卒?ごめんね難しい事言って

Permalink |記事への反応(1) | 16:01

このエントリーをはてなブックマークに追加ツイートシェア

2025-03-12

anond:20250312170445

その指摘を成り立たせるためには

指摘された人はこうする、ではなく

こうしてる人は指摘された人って論理で組み立てないと成立しないよ

論理学とか集合論をやり直してきて

Permalink |記事への反応(0) | 17:10

このエントリーをはてなブックマークに追加ツイートシェア

2025-02-26

俺はね、やっぱり哲学純粋数学も役に立たねぇなって思っちまうんだよな

俺はね、やっぱり哲学純粋数学も役に立たねぇなって思っちまうんだよな。

だが、その瞬間、パラドクスに陥る。この思考自体哲学命題であり、その論理構造数学的基盤に依拠している。

まさにゲーデル不完全性定理体現してるわけだ。

クソッ、頭の中で超弦理論とカラビ・ヤウ多様体交錯し始めやがった。

11次元の時空間で、プランク長スケールでの量子重力効果考慮すると、存在のもの確率的な様相を呈し、ハイゼンベルク不確定性原理存在論にまで拡張される。

昨日なんざ、スーパーリンゴ買ってて、突如としてペアノの公理からZFC集合論に至る数学基礎論の系譜脳裏に浮かんだ。

そして、ゲーデル不完全性定理コーエン強制法を経て、continuum hypothesisの独立性にまで思考が飛躍。

これって、日常現実数学抽象境界曖昧さを示唆してんじゃねぇのか?

帰り道、ガキどもがニーチェ永劫回帰について議論してんの聞こえてきて、思わず「お前ら、ウィトゲンシュタインの『論理哲学論考』読んだか?言語限界世界限界だぞ!」って叫んじまった。

だが同時に、後期ウィトゲンシュタイン言語ゲーム理論考慮に入れねぇとな。

あぁ、またフッサール現象学還元ハイデガー存在論的差異の狭間思考が揺れ動いてきやがる。

哲学者どもは、こんな認識論アポリアの中でメシ食ってんのか。

数学者連中だってラングランズ・プログラムの壮大な構想の中で、数論幾何と保型形式の深遠な関係に魅了されてるんだろうな。

正直、俺もそんな純粋知性の探求に身を捧げられる連中が羨ましい。

日々の下らねぇ現実に囚われてりゃ、位相幾何学におけるポアンカレ予想証明やら、P≠NP問題解決なんて夢のまた夢だからよ。

ったく、人生ってのは、まるでリーマンゼータ関数の非自明な零点の分布みてぇだな。

複雑で、規則性を秘めてそうで捉えどころがねぇ。

でも、その美しさと深遠さに魅了されずにはいられねぇ。

くそっ、また「PrincipiaMathematica」と「存在と時間」を同時に読み返したくなってきやがった。

超越論的現象学圏論類似性でも考察すっか。

Permalink |記事への反応(0) | 00:33

このエントリーをはてなブックマークに追加ツイートシェア

2025-02-09

数学構造は何から作られている?

数学構造は、以下の基本的な「素材」から作られていると考えられる。

1. 台集合(基底集合)

数学構造の出発点は、要素が集まった集合である。たとえば、群や環、位相空間といった構造はいずれも、何らかの台集合(例えば、数や点の集まり)をその基盤としている。

2.演算および関係

台集合の上に、要素同士の結合や順序付けを定める演算加法乗法、合成など)や、要素間の関係(順序、等号、位相の開閉の関係など)が定義される。これらの操作関係が、台集合に「動き」や「法則性」を与え、単なる集まり以上の意味を持たせる。

3.公理体系

さらに、その演算関係がどのような性質を満たすかを明確にするために、公理と呼ばれる基本的命題群が設定される。たとえば、群の公理結合律単位元存在、逆元の存在)や、位相空間公理開集合系の性質)などがこれにあたる。公理は、構造内の演算関係の「ルールブック」として、全体の一貫性保証する。

4.論理的枠組み*

上記の要素(台集合、演算関係公理)は、集合論形式論理といった論理的な基盤の上に構築される。これにより、数学構造客観的かつ普遍的論理法則に従って厳密に定義され、検証可能ものとなる。

まとめ

数学構造は「台集合」という材料に、その集合上で働く演算関係という加工を施し、公理という規則で仕上げた、論理学・集合論という工場で作られる『組織的構成物』であると言える。

Permalink |記事への反応(0) | 00:55

このエントリーをはてなブックマークに追加ツイートシェア

2024-11-29

anond:20241129104305

集合論を学んでこいよ

Permalink |記事への反応(0) | 10:46

このエントリーをはてなブックマークに追加ツイートシェア

2024-11-10

クリステヴァ集合論日本文脈に接合し、ジェンダー数学専攻を創設できないか

京都大学東京科学大学などで、新入生に勇気を与える専攻を準備したいところだ

ジェンダー物理学

ジェンダー化学

ジェンダー生物学

ジェンダー地球科学

ジェンダー天文学

ジェンダー数学

ジェンダー情報科学

Permalink |記事への反応(0) | 00:15

このエントリーをはてなブックマークに追加ツイートシェア

2024-06-04

anond:20240604130427

独身離婚した人を内包してるから正しくない

集合論も習ってないのか

Permalink |記事への反応(0) | 13:05

このエントリーをはてなブックマークに追加ツイートシェア

2024-02-21

[qrng]数学は量子物理学と同様に観察者問題がある

量子力学における観測問題についてはよく知られるように、人間主観性が量子実験の結果に重要役割果たしている。

ドイツ物理学者ヴェルナー・ハイゼンベルクによる有名な引用がある。

私たちが観察するのは現実のものではなく、私たち質問方法さらされた現実です。」

例えば有名なダブルスリット実験では、スリットの後ろに検出器を置かなければ電子は波として現れるが、検出器を置くと粒子として表示される。

したがって実験プロトコル選択は、観察する行動パターンに影響する。これにより、一人称視点物理学の不可欠な部分になる。

さて、数学にも一人称視点余地はあるか。一見すると、答えは「いいえ」のように見える。

ヒルベルトが言ったように、数学は「信頼性真実の模範」のようである

それはすべての科学の中で最も客観的であり、数学者は数学的真理の確実性と時代を超越した性質に誇りを持っている。

ピタゴラスが生きていなかったら、他の誰かが同じ定理発見しただろう。

さら定理は、発見時と同じように、今日の誰にとっても同じことを意味し、文化、育成、宗教性別、肌の色に関係なく、今から2,500年後にすべての人に同じ意味があると言える。

さて、ピタゴラス定理は、平面上のユークリッド幾何学の枠組みに保持される直角三角形に関する数学声明であるしかし、ピタゴラス定理は、非ユークリッド幾何学の枠組みでは真実ではない。

何が起こっているのか?

この質問に答えるには、数学定理証明することの意味をより詳しく調べる必要がある。

定理真空中には存在しない。数学者が正式システムと呼ぶもの存在する。正式システムには、独自正式言語付属している。

まりアルファベット単語文法は、意味があると考えられる文章を構築することを可能にする。

ユークリッド幾何学正式システムの一例である

その言語には、「点」や「線」などの単語と、「点pは線Lに属する」などの文章が含まれる。

次に正式システムのすべての文のうち、有効または真実である規定した文を区別する。これらは定理である

それらは2つのステップで構築されれる。まず、最初定理証明なしで有効である宣言する定理選択する必要がある。これらは公理と呼ばれる。

これらは正式システムの種を構成する。

公理から演繹は、すべての数学コンピュータで実行可能な印象を生む。しかし、その印象は間違っている。

公理選択されると、正式システム定理構成するもの曖昧さがないのは事実である

これは実際にコンピュータプログラムできる客観的な部分である

例えば平面のユークリッド幾何学と球の非ユークリッド幾何学は、5つの公理のうちの1つだけで異なる。他の4つは同じである

しかしこの1つの公理(有名な「ユークリッドの5番目の仮定」)はすべてを変える。

ユークリッド幾何学定理は、非ユークリッド幾何学定理ではなく、その逆も同様。

数学者はどのように公理を選ぶのか。

ユークリッド幾何学非ユークリッド幾何学場合、答えは明確である。これは、単に説明したいもの対応している。

平面の幾何学であれば前者。球の幾何学であれば後者

数学は広大であり、どのように公理選択するかという問題は、数学の基礎に深く行くと、はるかに感動的になる。

過去100年間、数学集合論に基づいてきた。

すべての数学オブジェクトは、いくつかの追加構造を備えたセットと呼ばれるものであるということだ。

たとえば自然数のセット1,2,3,4,...は加算と乗算の演算を備えている。

一般的なセットとは、数学で正しく定義されたことがない。

集合論特定正式システムによって記述される。Ernst ZermeloとAbraham Fraenkelと、選択公理と呼ばれる公理の1つに敬意を表して、ZFCと呼ばれる。

今日数学者は、すべての数学を支える集合論正式システムとしてZFCを受け入れている。

しかし、自分自身を有限主義者と呼ぶ少数の数学者がいる。

彼らは、無限公理と呼ばれるZFCの公理の1つを含めることを拒否する。

言い換えれば、有限主義者正式システムは、無限公理のないZFCである

無限大の公理は、自然数の集合1,2,3,4,...が存在すると述べている。すべての自然数に対してより大きな数があるという声明(「ポテンシャル無限大」と呼ばれる)よりもはるかに強い声明である

有限主義者は、自然数リストは決して終わらないことに同意するが、いつでも自然数の集合の有限の部分集合のみを考慮することに限定する。

彼らは一度にまとめたすべての自然数の合計が実在することを受け入れることを拒否する。

したがって、彼らはZFCから無限公理を削除する。

この公理を取り除くと、有限主義者証明できる定理はかなり少なくなる。

正式システム判断し、どちらを選択するかを決定することができるいくつかの客観的基準...なんてものはない。

主観的には、選ぶのは簡単である

時間空間を超越した何かを象徴しているので無限大が大好きだ」と言えば無限大の公理を受け入れることができる。

ゲーデルの第二不完全性定理は、十分に洗練された正式システム(ZFC等)は、自身一貫性証明することができないと述べている。

数学者は、今日のすべての数学の基礎であるZFCが確固たる基盤にあるかどうかを実際に知らない。

そしておそらく、決して知ることはない。

なぜなら、ゲーデルの第二の不完全性定理によって、より多くの公理を追加することによってZFCから得られた「より大きな」正式システムにおけるZFCの一貫性証明することしかできなかったから。

一貫性証明する唯一の方法は、さらに大きな正式システム作成することだけだ。

数学を行うためにどの公理選択すべきかについて、実際には客観的基準がないことを示唆している。

要するに、数学者が主観的に選んでいるというわけである自由意志に任せて。

公理のための主観的基準というのは、より豊かで、より多様で、より実りある数学に導くものを選ぶという人は多い。

これは自然主義と呼ぶ哲学者ペネロペ・マディが提唱する立場に近い。

自分自身制限する必要がないので、無限公理を受け入れる。

特定公理のセットを選択する行為は、量子物理学特定実験を設定する行為に似ている。

それには固有の選択肢があり、観察者を絵に導く。

これが、一人称視点とそれに伴う自由数学において正当な場所を取る方法である

Permalink |記事への反応(0) | 15:04

このエントリーをはてなブックマークに追加ツイートシェア

2024-02-16

anond:20240216160814

現代数学者ほとんどは形式化された数学の体系であるツェルメロ-フレンケル集合論ZFCを使っています.

言及されている通り,ゲーデル不完全性定理によってZFCが無矛盾であるならばZFCは自身の無矛盾性を証明することができません. ZFCが矛盾している可能性はあります. ZFCの無矛盾性に関しては, 一方でZFCを用いて多くの数学者数学をしている中でまだ矛盾が見つかってないという傍証もあります.

仮に矛盾が見つかってしまった場合, その後の方向性はいくつか考えられます:

1. その矛盾証明をよく調べて, その原因を取り除いてZFCより弱い新たな数学体系を構築する.

これに関しては普段数学をする際にフルでZFCを使っているわけではないので,合理的なZFCより弱い体系を見つけることができればこれまでの数学を続けることができるかも知れません.

2. その矛盾もっと深刻で代替案が見つからない場合.

この場合数学がどうなるか想像がつきません.数学にとって大打撃になると思います.

他にもZFC以外の別の数学形式的な基礎づけを与えようという動きもあります. またZFCより改善させるような新しい体系,公理形を見つける方向の研究もあります.

このように数学基礎論という数学の一分野は形式化された数学のもの数学的に調べようという分野があります.

Permalink |記事への反応(0) | 22:49

このエントリーをはてなブックマークに追加ツイートシェア

anond:20240216124331

哲学など数学以外のことは専門外のため,あくま数学に関することだけ言及させていただきます.

ユークリッド幾何学言及されているように数学歴史紀元前まで遡りますが,数学形式化が意識され始めたのは1900年代以降と最近の話です. 主にヒルベルトによって主導されたものだと私は理解しています. (もちろん多くの数学者がこのプログラムに関わってきました. )数学形式化や形式主義で調べると参考になると思います.

数学的な内容に関して言及したいことは多くありますが,かいつまんで述べさせていただきます.

(あくまでこれは元の記事が間違っているなどと主張しているわけではないです.現代数学の考え方や雰囲気の一部を分かっていただければ幸いです. )

現代形式化された数学原理的には決められたルール(公理と推論規則)を用いて行われる一連の手続きです. それらの「意味」が何かは一旦全て忘れてください. ここで公理とはあらかじめ定められた記号列で, 推論規則はいくつかの文字列を用いて新しい文字列を生み出す操作です, 例えば文字列A→BとAが与えられたとき文字列Bを得る操作があります.定理(数学命題)とはこの操作によって生み出される文字列です. これらの操作数学における証明形式的に記述したものになっています.論理式などもこの形式化のもとで特定の条件を満たす文字列として定義されます. 例えば論理式Pの否定は¬Pという文字列です. (ここでは否定を表すための記号として¬という文字列を用いています. )

ここまで文字列だけを考えた形式的なものですが,構造モデルを使うことによってこれらの文字列解釈する(つまり意味を与える)ことができます. (詳細は省きます. )構造モデルを定めることによって論理式の意味が一意的に定まります. またそれらの取り方を変えることによって意味が変わることもあります.

これの考え方によって(数学的な)意味形式から分離されています.さらに気になる場合ゲーデルの完全性定理などを見てください.

そして適切な公理と推論規則を定めることにより数学のもの形式的に扱うことできます. その適切な公理はツェルメロ-フレンケル集合論(ZFC)と呼ばれており,現在数学者はこのZFCを用いて数学をしています. (一部,圏論などでZFCに収まらない議論があると聞きますが, それらもZFCの適切な拡張を考えることで解決できます. )

まり, これまでに書かれた数学証明などは全てこのZFCを用いることで文字列操作に書き換えることができます.

一方で数学論文普段言葉(自然言語)を使って書かれます. これは本当に全て文字列に書き換えることをした場合, 可読性が著しく落ち, また分量も膨大になるため人が読めないためです.しか証明自然言語で書きつつも, いざとなったら形式的に文字列に書き換えることができるという前提に立っています. そしてこれは理論的には可能であり,数学の厳密性を担保しています.

定義の一意性」に関してですが私自身が元記事の要点を完全に理解しているわけではないのですが,数学に関していうとある数学概念定義複数あることはよくあります. もちろんその複数ある定義同値であることを証明されなければなりません. ここで同値というのはある数学対象A定義Pと定義Qで与えられていた時に, 「Aが定義Pを満たすならば,定義Qを満たす. またAが定義Qを満たすならば定義Pを満たす. 」ということです. 実際に使う際には用途に合った定義を用いることになります. それらは同値なのでどれを選んでも問題ないです.

以上がざっくりとした形式化された数学に関してです. 参考になれば幸いです.

追記: これは筆者個人の考えですが,数学哲学議論はしっかりと分離してなされるべきだと考えています. もちろん相互交流はなされるべきですが, 両者を混同するのは誤解や誤りの原因になると思います.

Permalink |記事への反応(3) | 20:40

このエントリーをはてなブックマークに追加ツイートシェア

2023-12-26

anond:20231226211609

文化人間という全く別の要素で集合論使うアホ発見

Permalink |記事への反応(1) | 21:17

このエントリーをはてなブックマークに追加ツイートシェア

2023-12-15

[廃人日記] 2023-12-15

近くのホームセンター本棚を買いました。

しかし、こういった商品は運びやすいように組み立て式になっており、しかDIYしている気分になれるので一石二鳥なのです。

本棚を組み立て終わると、デスクの上に積んであった本の山をすっぽりと収めることができました。

しかし、私は本棚がもう一つ欲しくなってしまいました。

というのも、私は数学愛好家なので、リファレンスとして数学書を大人買いしたいのです。

仕事柄、特に線形代数や離散最適化のような数学は使いますが、私が興味のあるのはそういった実用志向アルゴリズムではありません。

しろ取り組みたいのは、フェルマーの最終定理ラングランズ予想のような、一見すると実用からは遠いけれど、数学本質を突くような深淵です。

数学には二種類の文化があり、アルゴリズム的な問題解決者と、深淵理論を目指す者がいます

プログラマーであればほぼ例外なく前者の立場になりますが、後者というのは「理論Aの理解のためにはBの理解必要で、その理解にはCの理解必要で、その理解のためには...」という階層が非常に深いものを表します。

はいまだに、コホモロジーとはなんであるかについてよくわからないのです。

コホモロジーGPTに対し「小学生にもわかるように説明せよ」とやったものが以下です。

コホモロジーは、数学の中のとても難しい概念ですが、小学生にわかやす説明するために、一緒に想像の旅に出かけてみましょう。

まず、コホモロジーは、ある種の「形」や「パターン」を見つけるための道具と考えてみてください。例えば、あなた宝探しをしていて、地図があるとします。この地図は、宝物がどこにあるかを示していますしかし、この地図はただの紙切れで、宝物自体地図にはありません。でも、地図を使って、宝物のありかを見つけることができますよね。

コホモロジーも同じようなものです。コホモロジーは、数学的な「地図」のようなもので、それを使って、数学世界に隠された「宝物」を見つけることができます。この「宝物」は、数学の中の特定パターンや形、構造などを指します。

しかし、コホモロジーはとても複雑で、大人でも理解するのが難しいです。だから小学生あなたがすぐに理解できなくても大丈夫です。大切なのはコホモロジーのような難しい概念に挑戦する勇気と、学び続ける意欲を持つことです。これからも、色々なことに興味を持ち、学び続けてくださいね!。

これじゃあ、なにも理解していないのと同じでしょう。結局、深淵理解するためには地道な努力必要です。

理論構築者の観点からみると、数学登山に似ていると思います

コホモロジーにたどり着くためには、集合論群論位相幾何学ホモロジー理論と順を追っていかなければならないのです。

これまでの私は、理論構築者ではなく、問題解決者だったので、「問題」という単位物事理解してきました。

アルゴリズムなので、問題を解くための前提知識はさほど必要なく、むしろ必要なのはIQです。

ところが、ラングランズプログラム超弦理論といった深淵は、IQに加えて、山登りの体力や努力時間必須になります

しかも、仮に山を登り終えたとしても、プログラマー仕事としてなんの役にも立たないのです。

深淵に取り組むというのは、そういう廃人的な努力必要とするので、職業的数学者でない限り努力の誘因が失われてしまます

深淵登山をして、誰にも認められることな自己満足して、何が楽しいのでしょうか。

結局、理解した物事を外側に発信(例えば論文執筆)して社会との接点を作らなければ、本当の廃人になってしまうでしょう。

まあ、廃人日記を書くぐらいだから、それでもいいんですけどね。

Permalink |記事への反応(0) | 13:42

このエントリーをはてなブックマークに追加ツイートシェア

2023-09-28

anond:20230928152251

全員別々に一件ずつ書くってだれが決めたんだろうなw

数学集合論とかわかってなさそうw

あっごめんまた専門知識でちゃったwwww

Permalink |記事への反応(1) | 19:07

このエントリーをはてなブックマークに追加ツイートシェア

2023-03-10

ChatGPTが駆逐するのは弱小プログラマーだけだと思う

ここ最近、ChatGPTのプロンプトをひたすら書きまくってるのだが分かってきたことがある

恐らく近い将来ChatGPTによって大半のプログラマーは職を失うことになるだろうし

残されたプログラマーもソースコードを書くのでは無くてプロンプトを書くことの方が増えるだろう

アセンブリ言語を書いてる人はほぼ死滅しているしCやC++ですら書いてる人は少ない

同様にプロンプトを書く人(プロンプター)が重宝されるようになるのだろう(もちろん例外的分野は存在する)

ただ、残念ながらプログラマーや非プログラマーがプロンプターになれるかというとそうではない

プロンプトを書く時に必要なのは純粋プログラマーが必要とされている能力の部分だから

その言語を知ってるだとかライブラリを知っているといった知識的な能力ではなくて

要件定義能力論理演算集合論みたいな知識だったりオブジェクト指向関数的な考え方だけが純粋必要になる

例えば割とダメダメプログラマーは条件が100個あった時に普通にIF文を100個書く

こういうプログラマーはプロンプトを作ることができないし、仮に書いたとしてもまともに動かない

ちゃんとしたプログラマーは条件100個を整理してまず2つの場合に分けてそれぞれで3つに分け・・・みたいなことをする

場合によっては要件定義を鑑みて必要無い条件を削除する(もちろん確認の上で)

そういった整理整頓が出来る人じゃないとプロンプトを書くことは不可能なので

例えばPythonの書き方を知っているだけのプログラマーとかコピペで生きてきたプログラマーは死滅すると思う

彼らはプロンプトを書けないし、書くために学習しようとしてもベースとなっているものが無いのでそこから覚え直すしかない

なのでプログラマーの上位層はプロンプターとして生き残るが下位層は死滅するし、残念ながらプロンプター教室というのもちょっと想像が付かないしたぶん不可能だと思う

Permalink |記事への反応(1) | 13:40

このエントリーをはてなブックマークに追加ツイートシェア

2023-02-15

anond:20230215093221

横だけど、それいいね

用語(概念)を集合論的にとらえると、その概念スコープが定まりやすくなる。例外についても集合が伝わっていれば自己判断できるようになるだろう。

そのような集合論的な説明の仕方を、用語定義というのかもしれない。

Permalink |記事への反応(0) | 10:22

このエントリーをはてなブックマークに追加ツイートシェア

2023-02-08

[qrng]シュレーディンガーの猫のいくつかの解釈

シュレーディンガーアインシュタインに宛てて、量子力学コペンハーゲン解釈の重大な欠陥を明らかにするために、架空実験装置を作った。この解釈では、量子系は外部の観測者と相互作用するまで、2つ以上の状態の重ね合わせに留まるとされる[1]。

この効果を、原子というミクロ世界特殊性として片付けることはできるかもしれないが、その世界が、テーブル椅子、猫といったマクロ日常世界に直接影響を及ぼすとしたらどうだろうか。シュレーディンガー思考実験は、それを明らかにすることで、量子力学コペンハーゲン解釈不条理を明らかにしようとした。 粒子が重ね合わされた状態にあることは、一つの事実だ。しかし猫はどうだろう。猫はどちらか一方にしかさないし、死んだり生きていたりもしない。

ガイガーカウンターの中に、ほんの少しの放射性物質が入っていて、1時間のうちに原子の1つが崩壊するかもしれないが、同じ確率で1つも崩壊しないかもしれない。このシステム全体を1時間放置しておくと、その間、原子崩壊していなければ、猫はまだ生きていると言うだろう。システム全体のΨ関数(波動関数)は、その中に生きている猫と死んだ猫(表現は悪いが)が等しく混ざり合っていることで、このことを表現している。

この思考実験意味合いについては、多くの現代的な解釈や読み方がある。あるものは、量子力学によって混乱した世界に秩序を取り戻そうとするものである。また、複数宇宙複数の猫が生まれると考えるものもあり、「重ね合わせられた猫」がむしろ平凡に見えてくるかもしれない。

 

1.シュレーディンガーのQBist猫について

通常の話では、波動関数は箱入りのネコ記述する。QBismでは、箱を開けたら何が起こるかについてのエージェントの信念を記述する。

例えば、Aさんがギャンブラーだとしよう。ネコの生死を賭けたいが、量子波動関数が最も正確な確率を与えてくれることを知っている。しかし、世の中には波動関数のラベルがない。自分で書き留めなければならない。自由に使えるのは、Aさん自身過去の行動とその結果だけである。なので結果として得られる波動関数は、独立した現実を反映したものではない。世界がAさんにどう反応したかという個人的歴史なのだ

今、Aさんは箱を開けた。死んだ猫、あるいは生きている猫を体験する。いずれにせよ、Aさんは自分の信念を更新し、将来の出会いに期待するようになる。他の人が不思議な「波動関数崩壊」と呼ぶものは、QBistにとっては、エージェント自分の 賭けに手を加えることなのだ。

重ね合わせを形成するのはエージェントの信念であり、その信念の構造から猫について何かわかる。なぜなら、波動関数は、エージェントが箱に対して取り得るすべての行動(相互排他的な行動も含む)に関する信念をコード化しており、Aさんの信念が互いに矛盾しない唯一の方法は、測定されていない猫に固有の状態が全く存在しない場合からである

QBistの話の教訓は,ジョン・ホイーラーの言葉を借りれば参加型宇宙であるということである

 

2. ボーミアンについて

量子力学コペンハーゲン解釈によれば、電子のような量子粒子は、人が見るまで、つまり適切な「測定」を行うまで、その位置を持たない。シュレーディンガーは、もしコペンハーゲン解釈が正しいとするならば、電子に当てはまることは、より大きな物体特に猫にも当てはまることを示した:猫を見るまでは、猫は死んでいないし生きていない、という状況を作り出すことができる。

ここで、いくつかの疑問が生じる。なぜ、「見る」ことがそんなに重要なのか?

量子力学には、ボーム力学というシンプルでわかりやすい版があり、そこでは、量子粒子は常に位置を持っている。 猫や猫の状態についても同様だ。

なぜ物理学者たちは、シュレーディンガーの猫のような奇妙でありえないものにこだわったのだろうか?それは、物理学者たちが、波動関数による系の量子的な記述が、その系の完全な記述に違いないと思い込んでいたかである。このようなことは、最初からあり得ないことだと思われていた。粒子系の完全な記述には、粒子の位置も含まれるに違いないと考えたのである。 もし、そのように主張するならば、ボーミアン・メカニクスにすぐに到達する。

 

3.知識可能性について

シュレーディンガーの猫の本当の意味は、実在論とは何の関係もないと思う人もいる。それは、知識可能性と関係があるのだ。問題は、量子世界が非現実であることではなく、量子系を知識対象として安定化できないことである

通常の知識論理では、私たち質問とは無関係に、知るべき対象がそこに存在することが前提になる。しかし、量子の場合、この前提が成り立たない。量子力学的なシステムに対して、測定という形で問いを投げかけると、得られる答えに干渉してしまう。

 

4. 反実仮想的な本質

シュレーディンガー実験には、3つの基本的意味がある。

これらの本質的な特徴は「反実仮想」であり、何があるかないか現実)ではなく、何が可能不可能かについてである。実際、量子論の全体は反実仮想の上に成り立っている。反実仮想性質は、量子論運動法則よりも一般的であり、より深い構造を明らかにするものからだ。

量子論後継者は、運動法則根本的に異なるかもしれないが、反実仮想性質を示すことで、重ね合わせやエンタングルメントさらには新しい現象可能になるだろう。

シュレーディンガーは、仮想的な猫の実験で何を言いたかったのだろうか?現在では、シュレーディンガーは、量子論は、猫が死んでも生きてもいない浮遊状態にある物理可能性を示唆していると主張したと一般に言われている。しかし、それは正反対であるシュレーディンガーは、そのようなことは明らかに不合理であり、そのような結果をもたらす量子論理解しようとする試みは拒否されるべきであると考えたのである

シュレーディンガーは、量子力学波動関数は、個々のシステムの完全な物理記述提供することはできないと主張したアインシュタイン-ポドロスキー-ローゼン論文に反発していたのであるEPRは、遠く離れた実験結果の相関関係や「spooky-a-distance(不気味な作用)」に着目して、その結論を導き出したのである

シュレーディンガーは、2つの前提条件と距離効果とは無関係に、同じような結論に到達している。彼は、もし1)波動関数が完全な物理記述提供し、2)それが「測定」が行われるまで常に彼自身シュレーディンガー)の方程式によって進化するなら、猫はそのような状態に陥る可能性があるが、それは明らかに不合理であることを示したのだ。したがって、ジョン・ベル言葉を借りれば、「シュレーディンガー方程式によって与えられる波動関数がすべてではないか、あるいは、それが正しくないかのどちらか」なのである

もし、その波動関数がすべてでないなら、いわゆる「隠れた変数」を仮定しなければならない(隠れていない方が良いのだが)。もし、それが正しくないのであれば、波動関数の「客観的崩壊」が存在することになる。以上が、Schrödingerが認識していた量子力学形式理解するための2つのアプローチである。いわゆる「多世界解釈は、1も2も否定せずにやり過ごそうとして、結局はシュレーディンガー馬鹿にしていた結論に直面することになる。

 

5.波動関数実在論について

シュレーディンガーの例は、量子システムの不確定性をミクロ領域に閉じ込めることができないことを示した。ミクロな系の不確定性とマクロな系の不確定性を猫のように絡ませることが考えられるので、量子力学ミクロな系と同様にマクロな系にも不確定性を含意している。

問題は、この不確定性を形而上学的(世界における)に解釈するか、それとも単に認識論的(我々が知っていることにおける)に解釈するかということであるシュレーディンガーは、「手ぶれやピンボケ写真と、雲や霧のスナップショットとは違う」と指摘し、量子不確定性の解釈はどちらも問題であるとした。量子もつれは、このように二律背反関係にある。

ベルが彼の定理実験的に検証する前、量子力学技術が発展し、もつ状態実在性を利用し、巨視的なもつシステムを作り出す技術が開発される前、形而上学的な雲のオプションテーブルから外されるのが妥当であった。しかし、もしもつれが実在するならば、それに対する形而上学的な解釈必要である

波動関数実在論とは、量子系を波動関数、つまり、死んだ猫に対応する領域と生きた猫に対応する領域で振幅を持つように進化しうる場と見なす解釈アプローチであるシュレーディンガーが知っていたように、このアプローチを真面目に実行すると、これらの場が広がる背景空間は、量子波動関数自由度を収容できる超高次元空間となる。

 

6. 超決定論について

不変集合論IST)は、エネルギーの離散的性質に関するプランク洞察を、今度は量子力学状態空間に再適用することによって導き出された量子物理学のモデルであるISTでは、量子力学連続ヒルベルト空間が、ある種の離散的な格子に置き換えられる。この格子には、実験者が量子系に対して測定を行ったかもしれないが、実際には行わなかったという反実仮想世界存在し、このような反実仮想世界は格子の構造矛盾している。このように、IST形式的には「超決定論」であり、実験者が行う測定は、測定する粒子から独立しているわけではない。

ISTでは、ISTの格子上にある状態は、世界アンサンブル対応し、各世界状態空間特別な部分集合上で進化する決定論的系である非線形力学理論に基づき、この部分集合は「不変集合」と呼ばれる。格子の隙間にある反実仮想世界は、不変集合上には存在しない。

アインシュタインは、量子波動関数は、不気味な距離作用や不確定性を持たない世界アンサンブル記述していると考えていたが、これは実現可能である特にシュレーディンガーの猫は、死んでいるか生きているかのどちらかであり、両方ではないのだ。

 

7.関係量子力学について

シュレーディンガーの猫の寓話に混乱をもたらしたのは、物理システムが非関係的な性質を持つという形而上学仮定である。 もし全ての性質関係であるならば、見かけ上のパラドックスは解消されるかもしれない。

猫に関しては、毒が出るか出ないか、猫自身が生きているか死んでいるかであるしかし、この現象は箱の外にある物理系には関係ない。

箱の外の物理系に対しては、猫が起きていても眠っていても、猫との相互作用がなければその性質は実現されず、箱と外部系との将来の相互作用には、原理的に、猫がその系に対して確実に起きていたり確実に眠っていたりした場合には不可能だった干渉作用が含まれ可能性があるからだ。

まり波動関数崩壊」は、猫が毒と相互作用することによって、ある性質が実現されることを表し、「ユニタリ進化」は、外部システムに対する性質の実現確率進化を表すのである。 これが、量子論関係論的解釈における「見かけのパラドックス」の解決策とされる。

 

8. 多世界

物理学者たちは古典物理学では観測された現象説明できないことに気づき量子論現象論的法則発見された。しかし、量子力学科学理論として受け入れられるようになったのは、シュレーディンガー方程式を考案してからである

シュレーディンガーは、自分方程式放射性崩壊の検出などの量子測定の解析に適用すると、生きている猫と死んでいる猫の両方が存在するような、複数の結果が並列に存在することになることに気づいた。実はこの状況は、よく言われるように2匹の猫が並列に存在するのではなく、生きている1匹の猫と、異なる時期に死んだ多数の猫が並列に存在することに相当する。

このことは、シュレーディンガーにとって重大な問題であり、量子測定中に量子状態崩壊することによって、量子系の進化記述する方程式としての普遍的有効性が失われることを、彼は不本意ながら受け入れた。崩壊は、そのランダム性と遠方での作用から、受け入れてはならないのだろうか。その代わりに、パラレルワールド存在が示されれる。これこそが、非局所的な作用回避し、自然界における決定論を守る一つの可能である

[1]https://en.wikipedia.org/wiki/Schr%C3%B6dinger%27s_cat

Permalink |記事への反応(0) | 10:00

このエントリーをはてなブックマークに追加ツイートシェア

次の25件>
ログインユーザー登録
ようこそ ゲスト さん
Copyright (C) 2001-2025 hatena. All Rights Reserved.

[8]ページ先頭

©2009-2025 Movatter.jp