
はてなキーワード:積分とは
理系の博士号持ってる側からひとこと言わせてもらえれば、単純に科学技術が発展しすぎて大学4年間の勉強量なんかじゃもうどの分野でも「学問」どころか「技術者」としてもまともに働けないレベルの世界になってる。高校で習う微分・積分は400年前には最先端の数学だった。マジで本当の「専門家」からすれば、理系の大学の4年間で習う内容っていうのは、高校の理科や数学から見た小学校の四則演算程度の分量なんだよ。大学進学率下げようっていうのは、四則演算できない人増やそうっていうのと同じに聞こえるわ。
フェミニズムの分類が多すぎると聞いて
記述集合論(Borel階層, Projective階層, 汎加法族)
モデル理論(型空間, o-極小, NIP, ステーブル理論)
再帰理論/計算可能性(チューリング度, 0′, 相対計算可能性)
構成主義,直観主義,ユニバース問題,ホモトピー型理論(HoTT)
体論・ガロア理論
表現論
K-理論
初等数論(合同, 既約性判定,二次剰余)
解析数論(ゼータ/ L-関数,素数定理,サークル法, 篩法)
p進数論(p進解析, Iwasawa理論, Hodge–Tate)
超越論(リンドマン–ヴァイエルシュトラス, ベーカー理論)
実解析
多変数(Hartogs現象, 凸性, severalcomplex variables)
関数解析
バナッハ/ヒルベルト空間,スペクトル理論, C*代数, von Neumann代数
フーリエ解析,Littlewood–Paley理論, 擬微分作用素
確率解析
常微分方程式(ODE)
偏微分方程式(PDE)
非線形PDE(Navier–Stokes, NLS, KdV, Allen–Cahn)
幾何解析
リッチ流, 平均曲率流,ヤン–ミルズ,モノポール・インスタントン
エルゴード理論(Birkhoff, Pesin),カオス, シンボリック力学
点集合位相,ホモトピー・ホモロジー, 基本群,スペクトル系列
4次元トポロジー(Donaldson/Seiberg–Witten理論)
複素/ケーラー幾何(Calabi–Yau, Hodge理論)
スキーム, 層・層係数コホモロジー, 変形理論, モジュライ空間
多面体, Helly/Carathéodory,幾何的極値問題
ランダムグラフ/確率的方法(Erdős–Rényi, nibble法)
加法的組合せ論(Freiman, サムセット, Gowersノルム)
彩色,マッチング,マイナー理論(Robertson–Seymour)
列・順序・格子(部分順序集合, モビウス反転)
測度確率, 極限定理, Lévy過程, Markov過程, 大偏差
統計学
ノンパラメトリック(カーネル法, スプライン,ブーストラップ)
時系列(ARIMA,状態空間, Kalman/粒子フィルタ)
非凸最適化
離散最適化
整数計画,ネットワークフロー, マトロイド, 近似アルゴリズム
Littleの法則, 重み付き遅延, M/M/1, Jackson網
エントロピー,符号化(誤り訂正, LDPC,Polar), レート歪み
公開鍵(RSA,楕円曲線, LWE/格子),証明可能安全性,MPC/ゼロ知識
計算複雑性
機械学習の数理
量子場の数理
相転移, くりこみ, Ising/Potts, 大偏差
数理生物学
数理神経科学
データ解析
わかりづらく言っちゃった時に分かりやすく直すのって難しくない?なんでみんな推敲すれば簡単みたいに言うの?
方程式を与えられた数値が満たすかは誰でも機械的に判断できるけど因数分解や積分って難しいでしょ。それと同じなのに。
-----BEGINPGP SIGNEDMESSAGE-----Hash: SHA512https://anond.hatelabo.jp/20251009220326# -----BEGINPGP SIGNATURE-----iHUEARYKAB0WIQTEe8eLwpVRSViDKR5wMdsubs4+SAUCaOjIEwAKCRBwMdsubs4+SGtkAQDwM7E+RXM1e+GzCWAmQ/INEh/63Q+pXofSalYdkmLSbQEA3WYliB8wqrslPBwzOOW+LWENjZPLCzUcnZHg6DeLygw==bsGz-----ENDPGP SIGNATURE-----
僕が三週間かけて導出したp進弦理論の局所ゼータ関数上の正則化項を書き直せると思ったら大間違いだ。
あの計算は、ウィッテンでも手を出さない領域、すなわち、p進版のAdS/CFT対応をde Sitter境界条件下で非可換ゲージ群に拡張する試みだ。
通常の複素解析上では発散する項を、p進体のウルトラメトリック構造を利用して有限化することで、非摂動的な重力の相関関数を再構成できる。
だが、問題はそこにある。p進距離は三角不等式が逆転するので、局所場の概念が定義できない。
これはまるで、隣人がパンケーキを焼くときに「ちょっと目分量で」と言うのと同じくらい非論理的だ。
朝食はいつものように、オートミール42グラム、蜂蜜5グラム、カフェイン摂取量は80mgに厳密に制御した。
ルームメイトはまたしても僕のシリアルを間違って開けたが、僕はすでにこのような異常事態に備えて、バックアップとして同一銘柄を3箱ストックしてある。
僕が秩序を愛するのは強迫ではなく、宇宙の熱的死に抗うための小さな局所秩序の創出だ。
今日の研究は、T^4コンパクト化されたIIb型超弦理論のD3ブレーン上における非可換ゲージ理論の自己双対性。
通常、B場を導入することで非可換パラメータθ^{μν}が生成されるが、僕の考察では、θ^{μν}をp進値に拡張することで、通常のMoyal積が局所的整数体上で閉じない代数構造を持つ。
これが意味するのは、物理的空間が離散的p進層として現れるということ。言い換えれば、空間そのものが「整数の木構造」になっている。
ルームメイトが「木構造の空間って何?」と聞いたが、僕は優しく、「君の社交スキルのネットワークよりは連結性が高い」とだけ答えておいた。
午後は友人たちとゲームをした。タイトルはエルデンリング。だが彼らのプレイスタイルには忍耐が欠けている。
僕がビルドを純粋知力型にしてカーリア王笏を強化している間に、彼らは無計画に突っ込んではボスに殺されていた。
統計的に見ても、平均的なプレイヤーの死亡原因の82%は戦略ミスに起因する。
僕は「量子重力のパス積分と違って、こっちはセーブポイントがあるんだ」と指摘したが、誰も笑わなかった。理解力が足りないのは罪だ。
夜、コミックを再読した。ウォッチメンのドクター・マンハッタンの描写は、量子決定論の詩的表現として未だに比類ない。
あの青い身体は単なる放射線の象徴ではなく、観測者のない宇宙の比喩だ。
僕が大学時代に初めて読んだとき、「ああ、これは弦の振動が意識を持った姿だ」と直感した。
今日もそれを確かめるため、ドクター・マンハッタンが時間を非線形に認識するシーンを分析し、p進時空における時間関数t→|t|_pの不連続性との対応を試みた。
結果、彼の非時間的意識は、実はp進的時間座標における不連続点の集積と一致する。つまり、マンハッタンはp進宇宙に生きているのだ。
寝る前に歯を磨く時間は、時計が23:00を指してから90秒以内に開始しなければならない。これは単なる習慣ではなく、睡眠周期を最大化するための生理学的最適化だ。
音楽は再生しない。音波は心拍数を乱すからだ。ただし、ゼルダの伝説 時のオカリナのエンディングテーマだけは例外だ。あれは時間対称性を感じさせる旋律だから。
僕の一日は、非可換幾何と行動最適化の連続体でできている。宇宙のエントロピーが増大しても、僕の部屋の秩序は一定だ。つまり、少なくともこの半径3メートルの範囲では、熱的死はまだ先の話だ。
目覚ましは06:17、豆は正確に12.3グラム、挽き目は中細、湯の温度は93.2℃で抽出時間は2分47秒。
ルームメイトがたまにまちがえて計量スプーンを左から右へ並べ替えると、その不整合が僕の内部状態の位相をわずかに変えるのを感じるが、それは許容誤差の範囲内に収められている。
隣人の社交的雑音は僕にとって観測器の雑音項に過ぎないので、窓を閉めるという明快なオペレーターでそれを射影する。
友人たちとの夜はいつも同じ手順で、ログイン前にキーボードを清掃し、ボタンの応答時間をミリ秒単位で記録する。
これが僕の日常のトレースの上に物理的思考を埋葬するための儀式だ。
さて、本題に入ろう。今日はdSの話などではなく、もっと抽象的で圧縮された言語で超弦理論の輪郭を描くつもりだ。
まず考えるのは「理論としての弦」が従来の場の量子論のS行列的表現を超えて持つべき、∞-圏的・導来幾何学的な定式化だ。
開弦・閉弦の相互作用は局所的にはA∞代数やL∞代数として表現され、BV形式主義はその上での微分グラデーション付き履歴関数空間におけるマスター方程式として現れる。
これを厳密にするには、オペラド(特にmoduli operad of stablecurves)とそのチェーン複体を用いて散乱振幅をオペラディックな合成として再解釈し、ZwiebachやWittenが示唆した開閉弦場理論の滑らかなA∞/L∞構造を導来スタック上の点列として扱う必要がある。
導来スタック(derived Artin stack)上の「積分」は仮想基本クラスの一般化であり、Pantev–Toën–Vaquié–Vezzosiによるシフト付きシンプレクティック構造は、弦のモジュライ空間に自然に現れる古典的BV構造そのものだ。
さらに、Kontsevichの形式主義を導来設定に持ち込み、シフト付ポアソン構造の形式的量子化を検討すれば、非摂動的効果の一部を有限次元的なdeformationtheoryの枠組みで捕まえられる可能性がある。
ここで重要なのは「関手的量子化」すなわちLurie的∞-圏の言語で拡張TQFTを∞-関手として定義し、コボルディズム公理を満たすような拡張場理論の対象として弦理論を組み込むことだ。
特に、因果的構造や境界条件を記述するfactorization algebra(Costello–Gwilliamの枠組み)を用いると、局所的観測子代数の因子化ホモロジーが2次元世界面CFTの頂点代数(VOA)につながる様が見えてくる。
ここでVOAのモジュラリティと、2次元場の楕円族を標的にするエリプティックコホモロジー(そしてTMF:topological modular forms)が出てくるのは偶然ではない。
物理的分配関数がモジュラー形式としての変換性を示すとき、我々は位相的整流化(string orientation of TMF)や差分的K理論での異常消去と同様の深層的整合性条件に直面する。
Dブレインは導来カテゴリ(整合層の導来圏)として、あるいは交差的フカヤ圏(Fukaya category)として表現でき、ホモロジカルミラー対称性(Kontsevich)はこれら二つの圏の導来同値としてマップされる。
実際の物理的遷移やアセンションは、圏の安定性条件(Bridgelandのstability conditions)とウォールクロッシング現象(Kontsevich–Soibelmanのウォールクロッシング公式)として数学的に再現され、BPS状態はドナルドソン–トーマス不変量や一般化されたDT指数として計算される。
ここで出てくる「不変量」は単なる数値ではなく、圏のホールディング(持続的な)構造を反映する量化された指標であり、カテゴリ的量子化の語彙では「K-theory的なカテゴリ不変量」へと持ち上げられる。
さらに、超弦の非摂動的断面を完全に記述しようとするなら、モジュライ超曲面(super Riemann surfaces)の導来モジュラス空間、そのコンパクト化(Deligne–Mumford型)のsuperversion、そしてこれら上でのファクタライゼーションの厳密化が不可欠だ。
閉弦場理論のstringfieldtheoryはL∞構造を持ち、BV量子化はその上でジグザグするcohomologicalobstructionを制御する。
より高次の視座では、場の理論の「拡張度」はn-圏での対象の階層として自然に対応し、拡張TQFTはCobordism Hypothesis(Lurie)に従って完全に分類されうるが、弦理論の場合はターゲットが無限次元であるため古典的公理系の単純な拡張では捉えきれない。
ここで我々がやるべきは、∞-オペラド、導来スキーム、シフト付きシンプレクティック構造、A∞/L∞ホモロジー代数の集合体を組織化して「弦の導来圏」を定義することだ。
その上で、Freed–Hopkins–Telemanが示したようなループ群表現論とツイストK理論の関係や、局所的なカイラル代数(Beilinson–Drinfeldのchiral algebras)が示すような相互作用を取り込めば、2次元CFT分配関数と高次トポロジー的不変量(TMF的側面)が橋渡しされるだろう。
これらは既知の断片的結果をつなげる「圏的連結写像」であり、現実の専門家が何をどの程度正確に定式化しているかは別として、僕が朝に計量スプーンを右から左へ戻す行為はこうした圏的整合性条件を微視的に満たすパーソナルな実装に過ぎない。
夜、友人たちと議論をしながら僕はこれら抽象的構造を手癖のように引き出し、無為に遺伝子改変を選ぶ愉快主義者たちに対しては、A∞の結合子の非自明性を説明して彼らの選択が位相的にどのような帰結を生むかを示す。
彼らは大抵それを"面白い"と呼ぶが、面白さは安定条件の一つの可視化に過ぎない。
結局、僕の生活習慣は純粋に実用的な意味を超え、導来的整合性を日常に埋め込むためのルーチンである。
明日の予定はいつも通りで、06:17の目覚め、12.3グラムの豆、93.2℃、2分47秒。そしてその間に、有限次元近似を超えた場所での∞-圏的弦理論の輪郭をさらに一行ずつ明確にしていくつもりだ。
微分積分とか存在価値が謎すぎたけど、微分の意味をAIに聞いたら面白かった
でも聞いたらわかりやすかった
落ちるボールって車と違って、
落ちてる間ずっと速度上がってるやん
となると、ロケットの加速のシミュレーションとかそういうのがしやすくなる
もちろんそんなシミュレーションなんて普段しないけど、ちゃんと用途があるし、知れば知るほど普段裏側がよくわからんモノ(コンピューターとか最たるもの)の仕組みが少しずつわかりそう
要約:今回は要約はしません
本日の作業は、p-adic弦理論における散乱振幅の構造を再確認し、通常の弦理論(Archimedeanな場合)との対比を整理すること。特に、Veneziano振幅のp-adic版がどのように形式化され、さらにAdelicな統一の枠組みの中で役割を果たすのかを見直す。
通常の弦理論における4点Veneziano振幅は次式で表される(実数体上)
A_∞(s, t) = ∫₀¹ x^(s−1) (1−x)^(t−1) dx = Γ(s) Γ(t) / Γ(s+t)
ここで s, t は Mandelstam変数。
一方、p-adic版では積分領域・測度が p進解析に置き換えられる。
A_p(s, t) = ∫_{ℚ_p} |x|_p^(s−1) |1−x|_p^(t−1) dx
この結果として、p進弦の振幅はベータ関数のp進類似物として定義される。計算すると、次のように局所ゼータ関数的な形になる。
A_p(s, t) = (1 − p^(−1)) / ((1 − p^(−s))(1 − p^(−t))(1 − p^(−u)))
ただし
u = −s − t
重要なのは、Archimedeanおよびp-adicな振幅がAdelicな整合性を持つこと。
A_∞(s, t) × ∏_p A_p(s, t) = 1
という積公式が成立する(Freund & Witten, 1987)。
これはリーマンゼータ関数のEuler積展開と同型の構造を持ち、数論的側面と弦理論的散乱の間に直接的な接点があることを示す。
p-adicstringtheoryは「異常な」場として扱われるが、通常の弦理論の有効場の補完的な側面を提供している。
局所場の集合を全て集めた「Adelic統一」によって、物理的振幅が数論的整合性を持つことは、弦理論が単なる連続体モデルではなく「数論幾何的構造」に根ざしている可能性を強く示唆する。
p-adic tachyonの有効作用(非局所ラグランジアン)は、通常の弦理論の非局所場のモデルと形式的に対応しており、近年の非局所的宇宙論モデルやtachyon condensationの研究とも接続可能。
具体的に、p-adicstringfieldtheory における非局所作用
S = (1/g²) ∫ dᴰx [ −(1/2) φ · p^(−□/2) φ + (1/(p+1)) φ^(p+1) ]
の安定解を調べる。特に、tachyon vacuum の構造をArchimedeanな場合と比較する。
AdS/CFT対応のp-adic版(Bruhat–Tits木を境界とする幾何)の最新文献を精査する。
1. Bruhat–Tits木を用いたp-adic AdS/CFTの基本計算を整理。
2. tachyon有効作用の安定点を数値的に探索(簡単なPython実装でテスト)。
3. Adelicな視点から「物理的に実在するのはArchimedean世界だが、背後にp進世界が潜在している」という仮説をどう具体化できるか検討する。
p-adicstringtheoryは長らく「数学的 curiosum」と見なされてきたが、AdS/CFTのp-adicバージョンや非局所場理論としての応用が現代的文脈を与えている。
ひょんなことから、数学を勉強することがあって、もうだいたい25年ぶりに積分をしたんだけど、置換積分とか部分積分とか出てきたわけ。
みたいな感じで解答を写経したんだ。
懐かしいなぁ、とか思いながら写経してたらさ、急に図形的なイメージが湧いてさ、置換積分を理解したわけ。
「すげー!こういうことだったんだ!」
って感動した。
しかし、ここで不思議なのは、置換積分の意味も部分積分の意味もわかっていなかったのに、高校時代の俺は置換積分も部分積分を使えてたということだ。
こういう積分はこう置換して、こういう積分の時はこう部分積分にして、という感じでパターンパズルを解いていた。
改めて考えると、数学の利点って、理屈はわからなくても手続きを踏めば解答に辿り着けるということなのかもしれない。
わけがわからずとも、規則に従って手を動かす。そうすることで欲しい答えが得られるし、ある日どうしてそれで答えが得られるのかも理解できる日が来るかもしれない。
そう考えると、「きはじ」とか「みはじ」とかもそれでいいような気がしてきた。
出来なければ、とりあえず手をうごかせばいい。
教師でもなければ中学受験をむかえる子供がいるわけでもないのだけど。
さて、勉強の続きしよ。
3次元のサイクルの群(3 本立ての「輪ゴム」みたいなもの)に、基底を 4 つ用意する(鏡クインティックでは、周期積分の都合で 4 本の独立成分を見るのが標準的)。
これらに対応して、4つの周期関数(各サイクルに対するホロノミーのようなもの)がある。位置(=モジュライ空間の点)を動かすと、この4成分ベクトルが解析接続でグルグル混ざる。
右左で 2 つずつある超対称荷重は、(c,c) と (a,c) の2つのリング(演算ができる「カード束」)を生む。
物理の実体:タイプ IIB なら (c,c) 側が「複素構造のゆらぎ」を担う質量ゼロのスカラー場の多重体になり、タイプ IIA なら (a,c) 側が「サイズや形(カヘラー構造)」のゆらぎを担う。
つまり「世界面の演算で作ったカード束」と「多様体の引き出し(ホモロジー/コホモロジーの基底)」が、1 対 1 でラベリングし合う。
10次元→4次元にただ潰すのではなく、内部 6次元の洞(サイクル)の数・組合せを、4次元の場(ベクトル多重体やハイパー多重体)の数に移し替える。
机に喩えると:内部空間の引き出し(サイクル)が 4次元側のつまみ(ゲージ場やスカラ場)の数を決める。引き出しの数や入れ替え(同値変形)が物理の自由度の型を縛る。
さらに、D ブレーン(弦の端点がくっつく膜)の種類と積み重ね方は、ホモロジー群や K理論の元、より精密には派生圏の対象としてカタログ化される。これが後の「圏の自己同型」と噛み合う。
2. コニフォールド点(どこかでS³ がしぼんで消える。そこに巻き付いたブレーンが「超軽い粒子」になる)
3. Gepner/Landau–Ginzburg 点(右端の対称性が濃い領域)
それぞれの周りで、上の4 成分の周期ベクトルに対して、行列で表される混ぜ合わせ(モノドロミー)が掛かる。
コニフォールドでは、1 個の 3-サイクルが消えるため、それに伴うピカール=ルフェシェッツ型の写像が起き、周期ベクトルの1 列が他を足し上げる形で変わる(行列はほぼ単位行列で、1 行に 1 が足されるような単冪的挙動)。
大複素構造点の周りでは、「無限遠の反復」に相当する別種の行列が出る。
実験的に何をするか:一点から出発して数値的に周期を解析接続し、各特異点を一周して戻る。戻ってきた周期ベクトルが、元のベクトルにどんな行列が掛かったかを記録する。これがモノドロミー行列群。
ふつうは鏡対称のピカード–フックス方程式や(プレポテンシャルの)級数で扱うけど、君の問いは「鏡の装置を超える」方法。
1.tt*幾何(世界面 N=2 の基底選びに依らない量子地図)を導入し、基底のつなぎ目に出る接続+計量を測る。
2. 等角変形を保つ2d QFT の等時的変形(isomonodromy)として、特異点位置を動かしてもモノドロミーは保つ流儀に書き換える。
3. その結果、量子補正の非摂動成分(例えば D ブレーン瞬間子の寄与)が、ストークスデータ(どの方向から近づくかでジャンプする情報)としてモノドロミーの外側にぶら下がる形で整理できる。
4. 実務では、ブリッジランド安定条件を使って、安定なブレーンのスペクトルが特異点近傍でどこで入れ替わるか(壁越え)を地図化。壁を跨ぐとBPS状態の数が飛ぶ。これが 4次元の量子補正の影。
圏側:派生圏の自己同型(Fourier–Mukai 変換、テンソルでのねじり、シフト)
を対応させる(例:コニフォールドのモノドロミー ↔ セイデル=トーマスの球対象に対するねじり)。
特異点ごとの局所群(各点のループで得る小さな行列群)を、圏側では局所自動同型の生成元に割り当てる。
複数の特異点をまたぐ合成ループを、圏側では自己同型の合成として言語化し、関係式(「この順番で回ると単位になる」等)を2-圏的に上げる。
壁越えで現れるBPSスペクトルの再配列は、圏側では安定度の回転+単正変換として実現。これにより、行列表現では見切れない非可換的な記憶(どの順で通ったか)を、自己同型のブレイド群的関係として保持できる。
こうして、単なる「基底に作用する行列」から、対象(ブレーン)そのものを並べ替える機構へと持ち上げる。行列で潰れてしまう情報(可換化の副作用)を、圏のレベルで温存するわけだ。
1.モデル選定:鏡クインティック、もしくは h^{1,1}=1の別 3次元 CY を採用(単一モジュライで見通しが良い)。
2. 周期の数値接続:基点をLCS 近くに取り、コニフォールド・Gepner を囲む3 種の基本ループで周期を運ぶ。4×4 の行列を 3 つ得る。
3. 圏側の生成元を同定:コニフォールド用の球ねじり、LCS 用のテンサーby直線束+シフト、Gepner 用の位相的オートエクイバレンスを列挙。
4.関係式を照合:得た 3つの自己同型が満たす組み合わせ恒等式(例えば「ABC が単位」など)を、モノドロミー行列の積関係と突き合わせる。
5. 壁越えデータでの微修正:ブリッジランド安定度を実装し、どの領域でどの対象が安定かを色分け。壁を跨ぐ経路で自己同型の順序効果が変わることをBPS 跳びで確認。
6. 非摂動補正の抽出:等長変形の微分方程式(isomonodromy)のストークス行列を数値で推定し、これが圏側の追加自己同型(例えば複合ねじり)として実装可能かを試す。
7.普遍性チェック:別 CY(例:K3×T² 型の退化を含むもの)でも同じ字義が立つか比較。
特異点巡回で得る行列の群は、派生圏の自己同型の生成元と関係式に持ち上がり、壁越え・BPS 跳び・ストークスデータまで含めると、鏡対称の外にある量子補正も自己同型の拡大群として帳尻が合う見通しが立つ。
これに成功すれば、物理の自由度→幾何の位相→圏の力学という 3 層の辞書が、特異点近傍でも失効しないことを示せる。
Q. コニフォールド点を一周することで本質的に起きることを、もっとも具体に言い表しているのはどれ?
A) すべての周期が一様にゼロへ縮む
B) ある 3-サイクルが消え、それに沿った足し込み型の混合が周期に起きる
複素関数である条件で周回積分したら0になるってやつの証明がまた直観ありきで公理的な厳密な証明じゃなかった。
直観か、厳密な証明だったらなんでもかんでも「当然」「自明」と抜かすような言葉足らずなのかのどっちかしか見たことないんだよな。
厳密でかつ「定義より自明」とかじゃなく丁寧に行間を書いてる本がないっていうのが数学の地獄の一つな。
こんなんでどうしたら後進が育つんだよ。
-----BEGINPGP SIGNEDMESSAGE-----Hash: SHA512https://anond.hatelabo.jp/20250702182833# -----BEGINPGP SIGNATURE-----iHUEARYKAB0WIQTEe8eLwpVRSViDKR5wMdsubs4+SAUCaGT7wQAKCRBwMdsubs4+SJXEAPwIfIErH+e7+mlmfbjSVi7CEdP/nLEFi/HqBPFHVNbzkwD/ZfQMI7WcOh52CVFhZ+gPxwHckqKb9LTbJNzRc+RBhAw==MriM-----ENDPGP SIGNATURE-----
「十で神童、十五で才子、二十歳過ぎればただの人」というように、一見すごく賢いようにみえても、他の子と比べて成長が早かっただけの場合が多い。
実際のところ、それを見分けるすべはない。
しかし、現実日本の社会での運用は、ある一定の年齢で高校受験、大学受験と偏差値で切り分けていく。
早熟な子ほど、いい高校、いい大学への切符を手に入れ、発達が遅い子が中卒や高卒で就職させられているように思う。
知的障碍児なんかは発達が遅く、年齢の7掛けや5掛けくらいのスピードで学校の勉強が進んでいく。
小6で掛け算をどうにかというスピードで、中学を卒業すると、社会性も知識も不十分なまま、放り出される。
対価をもらうのに十分な能力が開発されないままに社会に出されても、作業所で仕事を与えるほうも負担だ。
障害児の例は極端だが、せっかく指導要領があるのに、理解しないまま進級させるというのはどうしたものだろうか。
そこらを放置したまま、指導要領を議論して何の意味があるのだろうか?
と議論をしたところで、理系に進んだ高校生の多くは社会科を捨てるのだ。
と議論をしたところで、文系に進んだ高校生の多くは数学を捨てるのだ。
それは、リソース配分のためで、なんのためかといえば受験のためで、同じ年齢で成績を競い合うからだ。
二次関数を理解できるまで高校2年生になれない、微分積分ができるまで高校三年生になれない、そうするべきだろう?
だって、義務教育って、最低限知っておいたほうがいい知識なんだろう?
最低限の知識をマスターせずに社会に出すなんて、仮免通らないまま公道を走らせるようなもんだろう?
オーペル (oper) とは、ある種の微分作用素のこと。
KdV方程式および関連する可積分な偏微分方程式が、カッツ・ムーディ代数として知られる代数構造とどのように対応するかを研究するために、ウラジーミル・ドリンフェルドとウラジーミル・ソコロフによって最初に定義され使用された。
現代的な定式化は、ドリンフェルドとアレクサンドル・ベイリンソンによるもの。
オーペルは、1981年にドリンフェルドとソコロフによるKorteweg–de Vries型の数式と単純リー代数に関するロシア語の論文で、最初に定義された。
すっかりどこまで書いたか忘れた。
2021年の終わりに↓これを読んだあたりまでだったな。
「Pythonで学ぶ実験計画法入門 ベイズ最適化によるデータ解析」
すげーいい本だったんだけども、実際に活用する場がないんで(なにせ頭を使わない仕事なんで)読みっぱなし。
今考えるとよくないね。
実は、この本に出てくるD最適計画、それからサポートベクター回帰っていうやつが1年後くらいにちょっと役立ったのだけど、それは後の話。
「ゼロつく」のときは理解できなかったクラスの概念も、このころにはすっかり便利さを実感することに。
ここで、もう一度「ゼロつく」に戻ればよかったんだけど、ここまでくると、自分の仕事周りのデータに対しては深層学習って不要だなって思って、戻ることはなかった。
前のエントリで書いた放送大学で「Rで学ぶ確率統計」の単位を無事に取れて調子に乗ってたので、せっかく入学したのだからといくつか授業取ってみた。
統計とかプログラミングの勉強については、「データの分析と知識発見」「コンピュータービジョン」「データベース」の三つかな。
それとは別に人文系の科目も調子に乗って履修してる。もともと数学とか嫌いで歴史とかのほうが好きだし。
「データの分析と知識発見」ってのは、Rを使うやつで、今考えれば多変量解析の入門って感じ。
「コンピュータービジョン」はクッソ難しかったな。
OpenCVってやつの使い方をサクっとパパっと知れるんかと思ったら、ガッツリとエピポーラ幾何とかいうやつから入って行列三昧だったし。
線形代数を知らないエセ理系舐めんなよ!わかるわけねーだろ(今までの本でも行列を触ってきてたけど、雰囲気でなんとかいける、あるいは読み飛ばしてもそういうもんと思って次に進めた。うまく言えないんだけど、100次元とかあるともう諦めてそういうもんだって割り切れるじゃん?3次元くらいだと、ちゃんと現実に戻ってこれないと困るから、ホントに理解できてないのが自覚させられる)
「データベース」もお気楽にSQLマスターできるもんかと思ったら、歴史から入ってガッツリと三層スキーマなにやら、SQL触るのなんてちょびっとだった。
で、このへんでいろんな方向に手を延ばすのもだけど、1つ資格でも取ってみようかなと思って、統計検定に手を出してみた。
大学がエセ理系のポンコツとはいえ、高校出てるんだし大村平の本を読みまくったんだし、受かるだろと思ったが、2級初受験は58点で不合格。
すっかり統計学に恐怖が出てしまったので、2級リベンジの前に「Python3エンジニア認定データ分析試験」とかいうやつに挑戦。
こっちは、ホントに易しくて、統計学がわかってなくてもライブラリの使い方がわかればまあなんとかなるもんだった。
ほぼ満点で弾みをつけて、2級リベンジ。
今度は過去問を買って真面目に机に向かう。
自分、机に向かうってことが嫌いで、ひたすら通読を繰り返すやりかたしか勉強法を知らなかったんだけど、この時ばかりは体に叩き込む作戦。
電卓で計算しては、分布表を読んで、判定して、みたいなルーチンを体で覚えて、見事リベンジ。
しかし、統計検定2級も受からないくせによく、背伸びしていろんな本読んでたもんだよ。
たぶん、わかったつもりになってなんもわかってなかったな。
統計検定2級を取った勢いで、準1級とやらもとっちまうかと手をだしたら、テキストが超難しいの。
4章くらい読んで、挫折して、数か月寝かせる、みたいな感じを何度か繰り返すことになった(結局、準1級に受かったのは2025年になってからだ)。
準1級は、統計学以前に、微分積分とか線形代数の知識がないとテキスト読めない仕様。
日本統計学会公式認定統計検定準1級対応統計学実践ワークブック
「式変形については行間を読んで解釈してくれページの都合で次行くからよろしく!」
っていう感じ。
見事に挫折。
統計も、微分積分も、線形代数も徐々にってことで、準1級はいったん休止。
それから、バイオインフォマティクス技術者認定試験とかいう試験をみつけて、興味が出たので公式テキストをとりよせて挑戦することに。
バイオインフォマティクス入門 第2版
元々、生物系だったので、なんとなくわかる単語も多かったし(理系のくせに微分積分も線形代数もヘナチョコって生物系だって丸わかりかもだが)。
これが、ほどよく多変量解析から機械学習からいろいろ網羅されていて、いい勉強に。
重いもの運ぶくらいしか取り柄がない腹が出て禿てきたオッサンが、若い院卒様に頼られるって自己肯定感高まる良い体験。
そこで使ったのが、D最適計画とサポートベクター回帰。
まだまだ鼻くそのようなもんなのに、意外と頼られるっていうことになったんだけど、まあ多いのはデータの可視化だったんで、データの可視化を学んでみることに。
本当は、ggplotとmatplotlibとかplotlyを100本ノックしようと思ったんだけど、やっぱり急がば回れ、有名な教科書の和訳らしいので↓をチョイス
「データビジュアライゼーション ―データ駆動型デザインガイド」
すげーお堅いw
やっぱ、こころのどっかで、「チャっとやったらパパっとできる!」みたいなのを求めてるんだよな。
そんで、二冊目はもうちょっと実務的に↓を選んだ。
『データ分析者のためのPythonデータビジュアライゼーション入門コードと連動してわかる可視化手法 』
この本はかなり実務的、というかどうすればお手軽に可視化できるかって話だけなんだけど、おかげさまでキレイに見せるテクニックだけは上がり、職場でも評価は上々。
「なんかよくわかんないけどアイツに持っていけば綺麗なFig作ってくれる。ポンコツだからいつも暇だし!」
という状態に。
放送大学で「データ構造とアルゴリズム」とかいう科目を取ったおかげで、意図せずC言語と関わる。
二度とC言語を使うことなんかないだろうけど、グラフ理論がコンピュータと相性がいいのが、データ構造の勉強をしてよくわかった。
そんで、やっとこさ挫折していた統計検定準1級の勉強を再開する。
で、また数章読んで飽きた。
だって、難しいんだもん。
っていうか、線形代数と微分積分の学力不足で投げたことをすっかり忘れて、もう一度開いて投げ出すんだから世話ないわなw
仕方ないから、微分積分は高校三年生の使う黄チャートを買って目を通した。
線形代数は
を一周。
部分積分と置換積分を手足のように使えるようになってやっとこさ、統計学実践ワークブックを読めるように。
読めるようになってから読むと、因数分解くらいの感じでマクローリン展開してきてることがわかって草。
統計の勉強のリハビリにと、放送大学でも「統計学」という授業をとってみたけれど、統計検定2級より易しかった感じ。
プログラミングの勉強はほとんどしなかったけど、Githubのアカウントつくって、renderとかherokuでウェブアプリを公開したりした。
Gitを覚えてみて初めて分かる、「名前を付けて保存」以外のファイル管理を知らなかった自分のヤバさ。
続く。
これは僕の卓越した知性が生み出す、今日の出来事に関する詳細な記録である。
今日の午前中は、僕の研究、すなわち解析的ラングランズプログラムと超弦理論の関係の深化に捧げられた。
僕のルームメイトのような凡人には理解できないかもしれないが、この2つの領域は、一見すると無関係に見えるかもしれないが、より高次元の対称性と、M理論の多様体における深遠な物理的現象を繋ぐ可能性を秘めているのだ。
特に、L-関数とp-進ガロア表現の間の対応が、開弦と閉弦の双対性、特にDブレーンにおけるゲージ理論の記述にいかに適用されるかを詳細に検討した。
標準模型の超対称性拡張における場の量子論の観点から、局所的なゼータ積分がどのように弦の散乱振幅に影響を与えるかについて、いくつかの新たな洞察を得た。
もちろん、これは自明なことではない。ルームメイトであれば、せいぜい「うーん、興味深い」としか言わないだろう。
午後は、非可換幾何学の文脈における量子群の表現論が、タイプIIB超弦理論におけるホログラフィック原理といかに相互作用するかについて、さらに深く掘り下げた。
特に、AdS/CFT対応の精密化において、局所的なラングランズ対応の概念がどのように役立つかを考察した。
僕の理論的枠組みは、より高次のリーマン面上の共形場理論が、解析的ラングランズプログラムにおける保型形式のモジュライ空間といかに対応するかを示唆している。
これは、まさに「壮麗」と呼ぶにふさわしい。
夕食後、僕の脳が今日の並外れた知的な努力から回復するためには、適切な活動が必要であると判断した。
そして、その活動とはもちろん、ヴィンテージゲームナイトである。
友人とルームメイト(そして不本意ながらアパートの隣人)を招集し、今夜は「ミレニアムファルコン」をテーマにした「ストーンヘイブン」の拡張版をプレイした。
僕の戦略は完璧であり、彼らの取るに足らない試みは、僕の卓越した戦術の前に脆くも崩れ去った。
ルームメイトが、またしても僕の完璧な計画を台無しにしようとしないことを願うばかりだ。彼のような無秩序な要素は、僕の宇宙の秩序を乱す。
以上が、僕の今日の知的な冒険と、それに続く完璧なレクリエーションの記録である。明日もまた、人類の知識のフロンティアを押し広げる一日となるだろう。
俺は、何者かになりたくて、ここ何十年もいろんな勉強に手を出してきた。
統計学、会計、機械学習、英語、プログラミング、経済、自己啓発に至るまで、はてなブックマークでホッテントリはたいていブックマークしてきたと思う。
そして、私はそのどれも身についていない。
Webコンテンツを流し読みしたり、本を通読して、わかった気になってそれっきりなのだ。
その瞬間はわかった気になってる。
数学は得意だったつもりでも、簿記を始めてみると損益分岐点の計算にすら手こずる。
要するに、数式をわかった気になって読み進めるくせに、中学の数学すら血肉になってはいないのだ。
私の半生を振り返る。
ある程度基礎力があったので、独力で教科書を読み進めることができるようになり、読んだだけで直後のテストくらいはクリアできるようになった。
高校で綻びが出た。
展開は規則に従って脳死だったが、その逆は反復練習なしでは乗り越えられなかった。
仕方なく鉛筆を手に取った。
微分は何も考えず手が動いたが、反復練習が足りないサボり魔には原始関数がまったくわからなく、仕方なく再び鉛筆を握ることになった。
唯一英語は苦手だった。
大学、社会人、どのステージでも、中2までの貯金で誤魔化してきてしまった。
例えば、アルゴリズムを勉強しようと思ったとする。本来なら、サンプルコードを写経して血肉になるところ、小学校時代にベーマガを写経してたので、なんとなく読めてしまい、脳内で動かした気になって血肉にならない。
教科書をなぞっただけで数学の反復練習をしなかったから、統計検定準1級でつまづいてる。
統計がわかってないのに、便利な統計パッケージをわけもわからず使っているので、機械学習が身にならない。
でも、アラフィフのオッサンが、中学レベルからやり直せというのか?
AIで学びのインプットやアウトプットは爆速になるというのは、たぶん間違ってる。